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ABSTRACT 

The coupled oscillations of containers , partially filled with an 

inviscid and incompressible liquid, are investigated. The following container 

configurations are considered: (1) a long, rectangular tank with an elastic 

bottom, (2) a long, rectangular tank with elastic walls, and (3) a cylin- 

drical tank with an elastic wall. Linear theories are used for the descrip- 

tion of the motion of the fluid, and that of the container. Numerical values 

of the natural frequencies are presented for various liquid heights and tank 

configurations. 
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Plate regidity 

Modulus of elasticity 

Gravitiational acceleration 

Plate thickness 

Liquid depth 

Tank width 

Pressure 

Time 

Transverse displacement of plate 

Cartesian coordinates 

Velocity potential 

Natural circular frequency 

Poisson's ratio 

Density of liquid 

Density of container material 

Natural frequencies for rigid bottom tank 
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IN'IRODUCTION 

Numerous authors have used linear and non-linear theories in studies 

of liquid oscillations in rigid containers. However, work involving coupled 

oscillations of liquid and elastic containers, is quite limited. Miles [l] 

accounted for the flexibility of the tank by considering specific natural 

wdes of the tank. Bleich [2] used approximate methods to include the 

elastic properties of the bottom of the tank and obtained a solution which 

is valid for large depths of liquid. Bhuta and Koval [3] accounted for the 

flexibility of the bottom by treating it as a membrane. Sielanann and Chang [4] 

calculated the natural frequencies of a liquid in a cylindrical tank with 

elastic bottom, by using a method similar to that of Bhuta and Koval. 

Huang [S] and [6] studied the longitudinal sloshing of a liquid in an elas- 

tic, hemispherical tank, with contradictory results. Coale and Nagano [7] 

presented an approximate solution for the axisymnetric modes of an elastic 

cylindrical-hemispherical tank, partially filled with liquid. Only membrane 

theory is used for the tank and some boundary conditions are not completely 

satisfied, 

The present study is concerned with the coupled oscillation of a long, 

elastic, rectangular tank, and a cylindrical tank with elastic wall, both 

partially filled with liqujd. The.analyses of the containers are based on 

bending theory. 
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BASIC EQUATIONS 

The governing equation for the motion of an inviscid and incompressible 

liquid is 

v2cp = 0 , (1) 

where CJI is the velocity potential, related to the velocity of the particle by 

-4 
v=&l. (2). 

At the free surface of the liquid the boundary condition is 

[ 
i&L a21 
at2 + g 82 z=H = O ’ (3) 

where z is the vertical coordinate, as lneasured from the bottom of the tank, 

and where H is the height of the liquid. The pressure at any point in the 

liquid is given by 

P a+ = of at pfgow (4) 

where pf is the mass density of the liquid. 

The equations of motion of the containers may be written in the follow- 

ing general form 

[L,]CU,~ + phf'i} = CP,3 Y (5) 

where the L 
Q@ 

are spatial differential operators, ui are the components of 

displacement for the container with respect to static equilibrium configura- 

tion, p is the density of the container material, h is the thickness of the 

tank wall, and pi is the loading function. For the problem under study only 

normal loading component exist and is related to the velocity potential as 

follows: 
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pi = I at the interface of liquid and tank. 

Equation (5) couples the liquid velocity potential cp and the container dis- 

placements ui. 

As usual, harmonic motion is assumed for the system. The general 

solutions for cp and ui are then obtained by solving the coupled differ- 

ential equations (1) and (5) in conjunction with the condition, equation (3), 

at the free surface of the liquid. The requirement of compatible motion of 

liquid and container then results in the frequency equation. An iterative 

procedure is used to obtain the numerical values for the natural frequencies. 
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LGNGBECTANGULARTANKWITHE~S!!!IC BO!l!lUM 

In Cartesian coordinates the motion of an inviscid and incompressible 

liquid is governed by 

&+&+& 0. 
ax2 ay2 az2 

(1) 

The geometry of the system under study is shown in Figure 1. For a long, 

rectangular tank, the fluid particles are assumed to move in vertical planes. 

The motion of the liquid is therefore independent of y. The boundary condi- 

tions at the free surface of the liquid, and at the interfaces of the tank are 

2 =o, I x=0 

$$ =o, 1 x=L 

[ 
2 u+g 

at2 
$g =o, 

2=H 

I = 0 (Rigid bottom) , 
z-o 

I z=o 
= g (Elastic bottom) , 

(2) 

(3) 

(4? 

(5a) 

(5b) 

where w is the transverse displacement of the plate, g is the gravitational 

acceleration, and t is the time. 

When harmonic motion is assumed for the system, the general solution 

of Equation (l), in conjunction with the boundary conditions (2), (3)j and 

(4) is found to be 
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Figure 1. Long Rectangular Tank. 
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co 

q3(x,z,t) = eiWt cd A cash y-f- y, sinh y 1 cash F , (6) 
I11=0 

where 

PO mrr ml-rI3 - w2 cash 9 
Ym = w2 ;iiig g(F) cash y ' 

(7) 

and where u) is the natural circular frequency of the system. 

For a tank with a rigid bottom the satisfaction of Equation (5a) results 

in the frequencies am of the liquid oscillation 

(8) 

For a tank with an elastic bottom the elastokinetic behavior of the 

bottom is governed by the plate equation: 

where w is the transverse displacement with respect to static equilibrium 

position, D is the plate rigidity, p is the plate density, h is the plate 

thickness, and the pressure p, on the plate is 

Dv4w + ph 
2 

aw 
at2 

= p 
I 

, (9) 
z=o 

P 
I 

292 
z=o = Pf at z=O I (10) 

Again, for a long tank, Equation (10) is independent of y. Substitution of 

Equation (6) into Equation (9), in conjunction with E'quation (10) yields: 

D 9 + ph 2 = pfiwiwt Jo Am cos 7 . (11) 
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The boundary conditions along the edges of the plate, or x = 0 and x = L, are: 

a) Simply supported case 

w= 0, i‘12) 

$0. (13) 

b) Clamped case 

w=o, 

a=o. 
ax 

(14) 

(15) 

The general solution of Equation (11) is assumed as 

w(x,t) = W(x)eicot . (16) 

Substitution in Equation (11) results in the ordinary differential equation 

Dd!i 
dx4 

- ph u?W = pf iw c Am cos y . 
III=0 

The general solution of Equation (17) is found to be 

W(x) = B1 cash Ax + B2 sinh hx + B3 cos Xx + B4 sin AX 

01 

+ iw 
c *mAm 

ml-TX cos - L' 
Ill=0 

where 

A2 = q/ D , -z am = ; 

( > 
m7T 

if 

L - A4 

7 

(17) 

(18) 

(19) 



The respective application of the boundary conditions (12), (13) or (15) and 

(16) then has the result that the arbitrary constants B1, B2, B3 and B4 may 

be expressed in terms of the Am as 

OD 

Bj = iw 1 Bjm cyrn Am Cl = 1,2,3, and 4) , 
IIFO 

in which the B 
Sm 

have the forms: 

a) Simply supported case 

where 

Slm= -2~ l r1 l ("'>'I , -7 L 

p 2m 
= 4 [ ‘coth AL - cos mT sinh ALI' - $ (~1~1 ’ 

133m = - 3[1 + $(F)2] , 

1 f3, = 2 [ cot AL - ~~1+$(~)2] 

b) Clamped case 

6. =Bjl+B Jm j2 
cos ml-r , 

B1l = 
1 - cash AL cos AL - sinh AL sin AL 

Z(cosh AL cos XL - 1) , 

B12 = 
cash AL - cos hL 

2(cosh AL cos ;IL - 1) ' 

B31 = 
1 - cash AL cos AL + sinh hL sin IL 

2(cosh AL cos AL - 1) , 

(20) 

(22) 

(23a) 

(23b) 

(23~) 



B32 = - B12 ' (2%) 

B 
B21 = - B41 = 

31 sin AL - Bll sinh AL 
cash AL - cos XL , (2-k) 

B22 = - Bb2 = B32 sin XL - B12 sinh IL 
cosh1L - cos AL , (23f 1 

The functions cash Ax, sinh Ax, cos Ix and sin Ix can be expanded as Fourier 

cosine series in 7. As a result, the general solution for the transverse 

deformation of the plate may be written as: 

w(x,t) = iwe iwt{ 7 am [$ (B,,,,a, + 8,,b, + B3,,,co + 8,,.,,d,) 
llF0 

(24) CD CJ 
+ c (8 lman + 8,,b, + B3"cn + 84,,,dn> ~0s y 1 c + (Y cos EEL n 1 L' 

n=l n=O 

where 

a 
0 

= 2 sinh hL , 

a = 2A sinh AL cosn rr 
n L[h2 + (?)'I ' 

b. = $ (cash AL - 1) , 

bn = *-p-$g=~ [c-h hL coy nn - 11 , 

C 
0 

= 2 sin IL , AL 

(25a) 

(25b) 

(25e) 

(25f) 



do = 6 (1 - COS hL) 

dn = -p-@j Cl - ws U cosn 73 

.cr%) 

(25h 1 

For a tank with an elastic bottom, the satisfaction of the boundary condi- 

tions (5b) in conjunction,with Equations (6), (18) and (20) results in a 

doubly infinite system of simultaneous, homogeneous algebraic equations for 

the Am, i.e., 

[amlfArn3 = CO1 s 

where 

of a = 
om - $ ~2~m(slm~o + B2mbo + 83mco + B4,do) + - 6, , 

oh 

(26) 

(27a) 

2 

- w2amtelman + 8 2mbn + @3mcn + g4mdn) - ( 
of % a l-m= 

( > 
s4+4 + y r, > 6, 9, (27b) 
L 

6 nm being the Kronecker delta. For a nontrivial solution of Equation (26) 

the determinant of the coefficient matrix must vanish. The frequency equa- 

tion thence becomes 

Ia,1 = 0 l (28) 

Numerical Examples 

The following data is used to calculate the frequencies for the liquid 

in a partially filled tank with elastic bottom: 

v = 0.3; g = 32.2 ft/sec2; L = 2.0 ft. 
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The bottom is considered to be clamped along its edges. The lowest circular 

frequencies in radians per set for various liquid depths are calculated by 

taking twenty terms in the series solution. The numerical results are shown 

in Table 1 and also plotted in Figure 2. 

TABLE 1 

FUNDAMENTAL FRRQUENCIRS "u? 

d = 77* 
H/L Rigid Bottom 

D = 49 in-lb 

118 4.3842 4.2779 
l/4 5.7557 5.6970 
318 6.4560 6.4275 
112 6.8104 6.7898 
5/8 6.9731 6.9629 

d = 110 d = 193 

D = 16.8 in-lb D= 3.13 in-lb 

4.1485 3.4800 
5.5781 4.7859 
6.3518 5.6484 
6.7421 6.2109 
6.9454 6.5859 

* d = pf L/(ph) and D is the plate rigidity 

These numerical values were obtained by using an iterative procedure on a 

Burrough 220 computer. For H/L zz 3/4, the difference between the frequencies 

for the tank with elastic bottom and that with a rigid bottom was undetectable. 
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Rigid ~- 
-.-.N d ~77; D=d 9 in-lb. 
-a---- d = 110; D = 168 in-lb. 
-..-..- d = 193; D = 313 in-lb. 

8 H/L 

Figure 2. Fundamental Frequencies of Long Rectangular Tank 
with Elastic Bottom. 

12 



LONG,RECUNGULAR TANKWIIHE~SIIC WALL 

For an infinitely long tank the equation governing the motion of the 

liquid Jn the tank is 

(1) 

The geonretry of the system under consideration is shown in Figure (1): The 

boundary conditions associated with Equation (1) are 

$f =o, I z=O 

[ A+ga co 
at2 aZ 1 , 2=H 

2 I =$, 
xX0 

2 I =a 
FL at . 

(2) 

(3) 

(4) 

(5) 

The general solution for the velocity potential is assumed to be 

cp(x,z,t) = X(x)Z(z)e iwt , 

where w represents the natural circular frequency 

stitution of Equation (6) in Equation (1) and the 

conditions (2) and (3) have the result 

(6) 

of the system. The sub- 

satisfaction of. the boundary 

co 

cp(x,z,t) = e iwt 
1 (An cash cnx + Bn sinh e,x)cos snz , (7) 

n=l 

I 

13 
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Figure (3) 
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where the G, are the roots of the equation 

u?H 
sH tan eH = - -i- l 

The equation of motion of the wall along x=0 is 

++- Plhl && 
a2 

=pg 
D1 at2 1 I x=0 

(8) 

(9) 

The assumption of harmonic motion of the form 

p(Z,t) = U(z)eiwt , (10) 

and substitution of this expression in Equations (1) and (9), has the result 

An cos snz . 

The general solution of this equation is 

U = Bl coshhlz + B2 sinh hlz + B3 cos )clz + B4 sin Xlz 

+- pf (id f :I 4 
D1 

cos enz , 
n=l an 1 

which must satisfy the possible boundary conditions: 

a) Simply supported 

p(O) = p(L) = 0 , 

c1"(0) = VW(L) = 0 . 

b) Both edges fixed 

p(O) = p(L) = 0 , 

CL'(O) = u'(L) = 0 . 

(11) 

(12) 

(13) 

(14) 
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Both edges of the walls will be considered fixed-here. The integration 

constants Bj (j = 1 to 4) can be expressed in terms of An by applying the 

boundary conditions shown in Equation (14). They are found to be 

0) 
.BJ = c Klcl 

u=l 

pf(iw) A 

D Cc 1 P 4-a14) ’ 
(15) 

where 

1 

KIIJ, = 
- cash ALL cos AlL - sinh XlL sin )clL + cos s L (cash AlL - cos hlL) 

2(cosh XlL cos AlL - 1) 

ZLL sin sPL (sinh IlL - sin hlL) 
+ 3 

2(cosh $L cos XlL - 1) 9 (16) 

K2u = 

cash hlL sin AlL + sinh $L cos XlL - cos c L (sinh hlL + sin )clL) 
Z(cosh $L cos 7clL - 1) 

E 
'2 sin suL (cash hlL - cos AlL) 
ll 

2(cosh hlL cos AlL - 1) 9 (17) 

(cash AlL - cos XlL) 
2(cosh AlL cos XlL - 1) 

e 
-L sin suL (sinh $L - sin AlL) 
Al 

Z(cosh XlL cos hlL - 1) 9 

K4u= -K2u l 

The equation of motion of the wall along x = J? is 

4 
Y+ 

-,,pf& P2h2 
az D2 D2 at Sk? 

(18) 

(19) 

(20) 

16 
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The solution of Equation (20) is assumed in the following form: 

iwt v=V(z)e . 

Substitution of Equations (7) and (21) into Equation (20) gives 

d4V -- 
dZ4 I2 (An cash snk + Bn sinh snR) cos snz , 

where 

A2 
4 _ p2h2 w2 

D2 

The general solution of the Equation (22) is 

V = Al* cash h2z + B2* sinh h2z + B3* cos A2z + B4* sin h2s 

Pf(iW) - +- 1 1 

D2 n=l ' n4-a24 
(An cash enR + Bn sinh s,J) cos sns . 

(21) 

(22) 

(23) 

'l'he application of the boundary conditions (14) results in the expressions 

cash E$ + BP sinh s&J) (24) 

for the integration constants B *. 
-i 

It is assumed that the liquid remains in contact with the wall through- 

out the motion. The conditions shown in Equations (4) and (5) must be satis- 

fied. The relationships for the 

become 

determination of the coefficients An and B n 

An + snB Ill CO8 en2 + $ F & [Klu cash hlz 
u=l su -l1 

+ K2u sinh Xlz + K3u cos hlz + Kc sin hlzl = 0 (25 1 

17 
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and 

OJ 
IQ: 

Pf w2 

sn sinh e,l, + 
n=l D2(cn4-124) 

cash en1 1 An + 

E, cash ena + 
Pf w2 

n2(cn4-X24) 

sinh sna IS B l cos anZ + 

(26) 

PfW2 a, A cash E R + B sinh e 1 
+- 

D2 
c LA 

v=l 
CC ,4-h24) 

CKq.L cash x2z + K 
21.1 

sinh A2z + 

+ K3p 
cos A2z + K 

4lJ 
sin A2z] = 0 

terms 

The functions, cash hkz, sinh hkz, cos hkz and sin hkz expressed in 

of their Fourier series expansions are: 

cash Akz = c ak n cos enz , 
n=l 

m 
sinh )ckz = c bk n cos snz , 

n=l 
(27) 

co 

cos AkZ = 
1 

Ck n cos en2 , 

n=l 

co 
sin ‘hkz = c dk n co.5 enz , 

n=l 

where 

ak 2 P n H*(lk2+en2) 
(ak sinh lkH cos snH + en cash XkH sin enR> , (28) 

18 



bk= 2 
n H*(ak2+Cn2) ('k cash hkH cos s,H + s n sinh hkH sin snH - hk) 

Ck 
2 = n H*(Ak2-sn2) (ak 

sin AkH cos enH - cn cos AkH sin snH) , (28) 

dk 2 = n H*(hk2-cn2) (hk - ak cos ~~~ cos snH - en sin hkH sin c,H) , 

and 

1 
H*-H+2611 

Substitution of Equations (27) 

sin(20nH) . 

and (28) into Equations (25) and (26) 

results in the following algebraic equations: 

Pf w2 Pf’u2 a ALL 

,(sn4-a14) 
An+ cnB 6 +- 

w D1 1 
p=l =p 4-a14 

+ Kbdil)) - 0 

and 
7 

(Kl ALl)+K2ubil)+K3 
CL P 

c;') 

(29) 

3 

(II PfW” 
'n sinh ena + 

D2(sn4-h24) 
cash sna]~n + [en cash sna + D2(I':, 4) sinh snJ]BJb 

2 

(30) 
PfW2 OD A cash e 1 + B sinh e R 

+- 
D2 1 lL 

CCL 4-a24 
u (Klua~2)+K2pb~2)+K3Fc~2)+K4pd~2)) = 0 . 

P=l 

Since n ranges for 1 to infinity this results in a doubly infinite system 

of equations for the unknown coefficients An and Bn, i.e., 

(31) 

19 



where 

Pf w2 

aw = D (c 4-h14) 
[(Kl;~1)+K2Pb~1)+K3pc~1)+K4pd~1)) + $u], , 

1 CL 

pfw2 cash e a 
&= 

"12 D2(s 4-h24) 
u (Kl,a~2)+K2Pb~2)+K3Pc~2)+K41Ld~2)) 

P 
(32) 

+ en sinh eni + [ 
pfw2 cash s,A 

D2(~n4-h24) 1 6nP ' 

e 1 
p* = 

pfw2 sinh 

w D (e 
u (Klua~2)tK2ub~2)+K3Pc~2)+K4Pd~2)) 

2 c1 4-A24) 

en cash e,A + PP2 sinh enA 
1 6 9 D2(sn4-X24) ‘+ 

For non-trivial solution, the determinant of the coefficient matrix of the 

Equation (31) must vanish, or 

(33) 

which represents the frequency equation. 

If only one of the two walls, say the left side one, is elastic. and 

the other side is rigid, the following equation may be reduced directly from 

Equations (29) and (30) by considering D2 = a: 

20 



Cv,,l @,I = 0 (34) 

where 

p w2 cash snA 2 cash snA 
Y = w Dl(s 4 4 

(Klpan+K2FPn +K3pcn+K4,dn> + ( pp 
p -a 1 Dl(en4ih4) 

- en sinh s,R 6 
"P 

(35) 

The frequency equation can be obtained inxnediately by requiring the deter- 

minant of the coefficient matrix of Equation (34) to vanish, or 

Iv,,1 = 0 (36) 

Numerical Examples 

In order to illustrate the results of the analysis, numerical examples 

for a tank with one wall elastic and the other one rigid and for a rectangu- 

lar tank with both wall elastic were worked out on a Burroughs 5500 digital 

computer. The infinite order determinant of Equations (33) and (34) were 

truncated to a twentieth order one for the calculation of the first coupled 

natural frequency. 

The results of the numerical examples are given in Tables 2 and 3 where 

the coupled frequencies are in radians per sec. The variation of frequencies 

versus liquidheight is also plotted in Figure (4). The data conrmon for all 

cases are 

h = 0.005 ft., w = 4 ft., L= 5 ft. 

P E 5.217 lb-sec2/ft.4, of = 2.019 lb-sec2/ft! 

E - 1.44 x 10' psf, V = 0.3 
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TABLE 2 

FlMDAMENTAL CIRCULAR FREQUENCIES FOR A PARTIALLY LIQUID FILIED 
RECTANGlJI& TANK HAVING ONE WALL ELASTIC AND THE OTHER ONE RIGID 

5 

4.6 
4.2 
3.8 
3.4 
3.0 
2.6 
2.2 
1.8 

H/L rad/sec w 

1 3.31 

0.92 3.70 
0.84 4.18 
0.76 4.81 
0.68 5.73 
0.60 7.32 
0.52 11.93 
0.44 22.49 
0.36 22.49 

0 rad/sec* 

5.03 

5.03 
5.02 
5.02 
5.00 
4.97 
4.95 
4.87 
4.74 

* 
Rigid tank slosh frequencies 

TABLE 3 

FUNDAMENTAL CIRCULAR FREQUENCIES FOR A PARTIALLY LIQUID FILLED 
RECTANGULAR TANK WITH BOTH WALLS ELASTIC 

H ft H/L 
5 1 
4.6 0.92 
4.2 0.84 

3.8 0.78 
3.4 0.68 
3.0 0.60 

2.6 0.52 
1.8 0.36 

a rad/sec 

3.21 
3.61 
4.09 
4.71 
5.62 
7.21 

11.79 

22.01 

Q rad secf 

5.03 
5.03 
5.02 

5.02 
5.00 
4.97 
4.95 
4.74 

* 
Rigid tank slosh frequencies 
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: Elastic 
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Figure 4. Fundamental Frequencies of Long Rectangular Tank 
with Elastic Wall. 
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CYLINDRICAL TANK WITH ELNL'IC WALL 

The governing differential equation for the axisynrnetrical motion of 

liquid in cylindrical coordinates is 

The boundary conditions, which must be satisfied at the rigid bottom and at 

the free surface of the liquid are 

e =o, I 
Z=O 

(2) 

(3) 

(4) 

The geometry of the system under consideration is shown in Figure (5). 

A separable solution for Equation (1) is assumed and the motion is 

considered to be harmonic. The velocity potential cp thus takes the form 

&,z,t> = R(r) z (z)e irut 
(5) 

where UI is the natural frequency of the system. The general solution of the 

Equation (lj with Equations (2), (3), and (4) all satisfied is found to be 

m . 
u(r,z,t) = eiwt c An cos cnz Io(snr) , (6) 

n=l 

where s n are the roots of the Equation 

2 
sH tan sH = - k". (7) 

24 
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The pressure at the tank wall is 

cn 

32 
of at ra I_ 

= pf(icu)elwt c An cos c,z Io(sna) . 
n=O 

(8) 

Ihe following differential equation governing the motion of the cylinder is 

used: 

r=a 
(9) 

Equation (9) is derived based on the assumption that the longitudinal inertia 

of the shell has negligible effect on the motion of the shell. The trans- 

verse displacement, w, is defined to be positive if it moves along inward 

normal direction. Ihe motion of the cylinder is assumed to be harmonic and 

takes the form 

w(r,t) = W(r)e icot . (10) 

Substitution of Equation (10) into Equation (9) results in the following 

ordinary differential equation: 

4 
dW + 4h4 w = 2 
dz4 

An cos snz Io(sna) , 
n=O 

where 

4A4 = c+ - ohw2)*. 
a 

(11) 

(12) 

The boundary conditions for the cylindrical shell are 

a) Simply supported 
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w =o, (13) 

w =o. zz (14) 

b) Clamped edge 

w =o, (15) 

w =o. 2 (16) 

The general solution of the differential equation (11) is found to be 

w = ehz(Bl cos AZ + B2 sin hz) + emhz(B3 cos hz i- B4 sin AZ) 

(17) 
O3 Io(sna)An 

- 2 (icu) 1 
4 + 4h4 'OS snz 

n=l sn 

where B 1' B2, JJ3r and B4 are integration constants which may be expressed 

in terms of Fourier coefficients An when the boundary conditions shown in 

Equations (13), (14), and/or Equations (15) and (16) are applied. 

For a cylindrical tank clamped along both ends, boundary conditions 

shown in Equations (15) and (16) must be satisfied. The integration con- 

stants B 1' B2, B3, and B 4 are found to be 

B.i = 
co pf(idIo(~ dA 
1 D(s 4 + 4h4) kw j = l lzo 4 l 

u=l P 

where 

1 
Klp = - q -i qI emA cos o$(sin hL - cos AL) - $ sin 8 uL sin hL 1 

cos s+(sin AL + cos AL) + + sin suL sin hL 1 

(18) 

+ e-2= - 2 - sin(2AL) + COS (2AL)] 
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K2p = 
-‘rCK 

c2 L 3 lp - 2 CO8 e 
@ 

sin AL + F sin 6 
G 

(sin AL + cos AL) 1 

K% =+(l+K ) 
1P 

K4P 
=+(2K +K 

1P 2p 
+ 1) 

and 

Cl = 4 - 2 cos 2hL - e 2XL _ .-2XL 

C2 =e AL [2 + sin(2hL) - cos(2XL)] - emAL 

C3 =e -AL - ehL [sin(2XL) + cos(2hL)J 

The functions e AZ cos AZ, e AZ sin hz, e -AZ cos Xz and e -hz sin AZ are 

expanded in Fourier cosine series as 
Co 

ehz COSAZ = 7 a -2 m cos emz , 
m=l 

CD 

AZ 
e sinhz = 1 bm cos crnz , 

ml 

CD 
-AZ e coshz = c dm cos smz , 

IlFl 

m 

-AZ e sinXz= 1 dm cos emz , 
rrpl 

where 
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1 A[eXH cos(h+em)H-1) + (A+e,)e AH sin(sm+A)H 
a = m 

C H + &- sin(2cmH)] A2 f .(A+em12 
m 

A[ea 

+ -- 
cos(h- s,)H-l] + (A-sm)ehll sin(h-sm)H 

A2 + (bernI 1 , 
Aem AH 

b 1 sin(A+ s,)H - (A+c,)[e cos(X+s,)H - l] 
= m l-I+* sin(2smH)] A2 + (A+em)2 

m 

he AH sin(A-sm)H - (A-c,)[e AH co&-cm)H - 1] 
+ 

A2 + (A-Q2 1 , 
(A+em)emAH 

-AH 
1 sin(Xi-cm)H - x[e cos(h+em)H - l] 

C = m 
C II++ sin(2smH)] A2 + tA+em)2 

m 

0 -em)e -AH sin@-sm)H - h[e -AH 
+ 

cos@-em)H - l] 1 A2 + I 
9 

dm = - 1 
H++ sin(2emH)] 

m 

Xe -lH sin(sm+A:)H + (h+sm)[e -hH cos(l+sm)H - l] 

A2 + (A+Em12 

+ 
XewxH sin()i-sm)H + (A-~,)[~-~H cos(h-sm)H - l] 

A2 + (A-Em)2 1 . 
For compatible motion of the tank wall and the liquid in the tank, 

the following condition must be satisfied: 

, 
!I 

++a 
ar I 

r=a 
(26) 
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Substitution of Equations (5) and (10) in conjunction with the 

Equations (18) through (25), into the Equation (26) yields the doubly infin- 

ite system of simultaneous, homogeneous algebraic equations: 

n¶CL =1toa (27) 

where 

Q = 
w D(eP4+4A4) (Kluan + K2Vbn + K 

5 % 
cn + K dn) 

(28) 

+ 
c 

Pf w2 I1 (ena) 

(en4+4h4) - sn Io(cna) 1 6 nu 

where 6 is the Kronecker delta. 
"CL 

For non-trivial solution, the determinant 

of the coefficient matrix must vanish. Therefore, the frequency equation 

becomes 

lffnpI = 0 (29) 

The fundamental frequencies of a liquid partially filled in an elastic 

circular cylindrical tank with a rigid bottom are obtained according to the 

following data: 

pg = 168 lb/cu. ft. pfg = 65 lb/cu. ft. 

E = 1.44 x 10' psf. V = 0.3, h = 0.001 ft. a = 12 ft. 

The results are shown in the Table 4 and Figure (6): 
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TABLE 4 

FUNDAMENTAL CIRCULAR FREQUENCIES FOR A PARTIALLY FILLED 
CIRCULAR CYLINDRICAL TANK HAVING A FLEXIBLE WALL 

H H/a w rad/sec D rad/sec* 

2 0.166 63.28 2.40 

3 0.250 50.21 2.76 

4 0.333 42.48 2.96 

5 0.417 37.17 3.08 

6 0.500 33.16 3.14 

7 0.583 29.98 3.17 

8 0.667 27.37 3.19 

9 0.750 25.15 3.19 

10 0.833 23.26 3.20 

* 
Rigid tank slosh frequencies 
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Figure 6. Fundamental Frequencies of Cylindrical Tank 
with Flexible Wall. 
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DISCUSSIONS 

The coupled oscillations of a liquid partially filled in a container 

having an elastic bottom or elastic walls have been studied. Two different 

tank configurations, namely a rectangular and a circular container both 

with flat bottoms were considered. Since the effect of the flat elastic 

bottom of a circular cylindrical tank to the frequencies of the system has 

been studied by several authors [SJ, [4], etc. Therefore, no further inves- 

tigation is attempted in this report. The methods used for both configura- 

tions are similar and straight forward. The effects of the flexibility of 

the container may be summarized according to the results of the numerical 

examples presented previously. 

1. The flexibility of the bottom of a rectangular tank reduces the 

natural frequencies of the system. The frequency increases as the depth of 

the liquid increases and gradually approaches to the value corresponding to 

the case of a rigid container. According to the numerical examples worked, 

the effect of the flexibility of the bottom becomes negligibly small when 

the depth of the liquid H is increased to approximately three-fourth of the 

width of the tank. 

2. For the cases where the flexibility of the container walls of a rec- 

tangular tank are taken into account, the lowest frequency of the system 

occurs when the tank is completely filled. The frequencies increase as the 

depths of the liquid decrease. The frequencies exceed the value correspond- 

ing to rigid tank case when the depth of liquid, H, is gradually reduced to 

approximately three-fifth of the container height. 

3. The corresponding natural frequencies for a rectangular tank having 

one flexible wall are slightly higher, but not appreciable, than the case 

having both walls flexible. 
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4. The frequency increases as the depth of liquid decreases in a 

circular cylindrical container having a flexible wall. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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