607 research outputs found

    Estrogen Enhances the Expression of the Multidrug Transporter Gene ABCG2-Increasing Drug Resistance of Breast Cancer Cells through Estrogen Receptors.

    Get PDF
    BACKGROUND: Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. RESULTS: In our study, ATP-binding cassette sub-family G member 2 (ABCG2), adenosine triphosphate (ATP) synthase and cytochrome c oxidase subunit VIc (COX6C) were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX). The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor Ī± (ERĪ±) in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. CONCLUSIONS: E2 induced the expression of ABCG2 through ERĪ± and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance

    Estrogen receptor Ī± in cancer associated fibroblasts suppresses prostate cancer invasion via reducing CCL5, IL6 and macrophage infiltration in the tumor microenvironment

    Get PDF
    Stromal E2/ERĪ± signals negatively-regulate the PCa invasion. CAF.ERĪ±(-) or ERĪ±(+) cells were treated with vehicle, E2 (10 nM) or/and ICI182,780 (10 Ī¼M) and co-cultured with macrophages for 48 hr. CMs were collected and added to 24-well plates and the PCa cells (C4-2) were seeded into inserted transwells pre-coated with matrigel. After 48 hr of incubation, invaded PCa cells were counted and compared, and quantitation data is shown below the images

    Clinicopathologic features and outcomes following surgery for pancreatic adenosquamous carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic adenosquamous carcinoma (ASC) is a rare pancreatic malignancy subtype. We investigated the clinicopathological features and outcome of pancreatic ASC patients after surgery.</p> <p>Methods</p> <p>The medical records of 12 patients with pancreatic ASC undergoing surgical treatment (1993 to 2006) were retrospectively reviewed. Survival data of patients with stage IIB pancreatic adenocarcinoma and ASC undergoing surgical resection were compared.</p> <p>Results</p> <p>Symptoms included abdominal pain (91.7%), body weight loss (83.3%), anorexia (41.7%) and jaundice (25.0%). Tumors were located at pancreatic head in 5 (41.7%) patients, tail in 5 (41.7%), and body in 4 (33.3%). Median tumor size was 6.3 cm. Surgical resection was performed on 7 patients, bypass surgery on 3, and exploratory laparotomy with biopsy on 2. No surgical mortality was identified. Seven (58.3%) and 11 (91.7%) patients died within 6 and 12 months of operation, respectively. Median survival of 12 patients was 4.41 months. Seven patients receiving surgical resection had median survival of 6.51 months. Patients with stage IIB pancreatic ASC had shorter median survival compared to those with adenocarcinoma.</p> <p>Conclusion</p> <p>Aggressive surgical management does not appear effective in treating pancreatic ASC patients. Strategies involving non-surgical treatment such as chemotherapy, radiotherapy or target agents should be tested.</p

    Isolated pancreatic metastasis from rectal cancer: a case report and review of literature

    Get PDF
    Isolated pancreatic metastases from a non-pancreatic primary malignancy are very rare. Studies have shown that resection of metastases is of proven benefit in some types of tumors. We report a case of 76-year-old Taiwanese woman with rectal adenocarcinoma treated with neoadjuvant chemoradiotherapy and abdominoperineal resection 2 years ago presenting with an asymptomatic mass at the pancreatic tail on a routine follow up abdominal computed tomography scan. The patient underwent distal pancreatectomy and splenectomy under the preoperative impression of a primary pancreatic malignancy. Histological examination of the surgical specimen showed metastatic adenocarcinoma. Immunohistochemical studies confirmed the diagnosis of pancreatic metastasis from rectal adenocarcinoma. Postoperative chemotherapy in the form of oral capecitabine was given. The patient is alive and disease free 12 months after the surgery. In a patient presenting with a pancreatic mass with history of a non-pancreatic malignancy, a differential diagnosis of pancreatic metastasis should be considered. Surgical resection of a solitary pancreatic mass is justified not only to get the definitive diagnosis but also to improve the survival

    Novel intronic microRNA represses zebrafish myf5 promoter activity through silencing dickkopf-3 gene

    Get PDF
    A strong, negative cis-element located at the first intron +502/+835 (I300) of zebrafish myf5 has been reported. To elucidate the molecular mechanism underlying this repression network, we microinjected zebrafish single-cell embryos with I300 RNA, resulting in the dramatic reduction of luciferase activity driven by the myf5 promoter. Within this I300 segment, we identified an intronic microRNA (miR-In300) located at +609/+632 and found that it was more highly expressed in the older mature somites than those newly formed, which negatively correlated with the distribution of zebrafish myf5 transcripts. We proved that miR-In300 suppressed the transcription of myf5 through abolishing myf5 promoter activity, and we subsequently identified the long isoform of the Dickkopf-3 gene (dkk3) as the target gene of miR-In300. We further found that injection of the dkk3-morpholinos (MOs) resulted in downregulation of myf5 transcripts in somites, whereas co-injection of myf5 mRNA with dkk3-MO1 enabled rescue of the defects induced by dkk3-MO1 alone. Finally, injection of miR-In300-MO enhanced both myf5 transcripts in somites and the level of Dkk3 protein in zebrafish embryos. Based on these findings, we concluded that miR-In300 binds to its target gene dkk3, which inhibits the translation of dkk3 mRNA and, in turn, suppresses zebrafish myf5 promoter activity

    Labeled microRNA pull-down assay system: an experimental approach for high-throughput identification of microRNA-target mRNAs

    Get PDF
    We developed a simple, direct and cost-effective approach to search for the most likely target genes of a known microRNA (miRNA) in vitro. We term this method ā€˜labeled miRNA pull-down (LAMP)ā€™ assay system. Briefly, the pre-miRNA is labeled with digoxigenin (DIG), mixed with cell extracts and immunoprecipitated by anti-DIG antiserum. When the DIG-labeled miRNA and bound mRNA complex are obtained, the total cDNAs are then subcloned and sequenced, or RTā€“PCR-amplified, to search for the putative target genes of a known miRNA. After successfully identifying the known target genes of Caenorhabditis elegans miRNAs lin-4 and let-7 and zebrafish let-7, we applied LAMP to find the unknown target gene of zebrafish miR-1, which resulted in the identification of hand2. We then confirmed hand2 as a novel target gene of miR-1 by whole-mount in situ hybridization and luciferase reporter gene assay. We further validated this target gene by microarray analysis, and the results showed that hand2 is the top-scoring among 302 predicted putative target genes. We concluded that LAMP is an experimental approach for high-throughput identification of the target gene of known miRNAs from both C. elegans and zebrafish, yielding fewer false positive results than those produced by using only the bioinformatics approach

    Targeting Lactate Dehydrogenase-A Inhibits Tumorigenesis and Tumor Progression in Mouse Models of Lung Cancer and Impacts Tumor-Initiating Cells

    Get PDF
    The lactate dehydrogenase-A (LDH-A) enzyme catalyzes the interconversion of pyruvate and lactate, is upregulated in human cancers, and is associated with aggressive tumor outcomes. Here we use an inducible murine model and demonstrate that inactivation of LDH-A in mouse models of NSCLC driven by oncogenic K-RAS or EGFR leads to decreased tumorigenesis and disease regression in established tumors. We also show that abrogation of LDH-A results in reprogramming of pyruvate metabolism, with decreased lactic fermentation in vitro, in vivo, and ex vivo. This was accompanied by reactivation of mitochondrial function in vitro, but not in vivo or ex vivo. Finally, using a specific small molecule LDH-A inhibitor, we demonstrated that LDH-A is essential for cancer-initiating cell survival and proliferation. Thus, LDH-A can be a viable therapeutic target for NSCLC, including cancer stem cell-dependent drug-resistant tumors

    Phase Diagram and High Temperature Superconductivity at 65 K in Tuning Carrier Concentration of Single-Layer FeSe Films

    Full text link
    Superconductivity in the cuprate superconductors and the Fe-based superconductors is realized by doping the parent compound with charge carriers, or by application of high pressure, to suppress the antiferromagnetic state. Such a rich phase diagram is important in understanding superconductivity mechanism and other physics in the Cu- and Fe-based high temperature superconductors. In this paper, we report a phase diagram in the single-layer FeSe films grown on SrTiO3 substrate by an annealing procedure to tune the charge carrier concentration over a wide range. A dramatic change of the band structure and Fermi surface is observed, with two distinct phases identified that are competing during the annealing process. Superconductivity with a record high transition temperature (Tc) at ~65 K is realized by optimizing the annealing process. The wide tunability of the system across different phases, and its high-Tc, make the single-layer FeSe film ideal not only to investigate the superconductivity physics and mechanism, but also to study novel quantum phenomena and for potential applications.Comment: 15 pages, 4 figure
    • ā€¦
    corecore