4,933 research outputs found

    Two solutions to the adaptive visual servoing problem

    No full text
    Published versio

    Use Of Chinese Medicine Among Colorectal Cancer Patients: A Nationwide Population-Based Study.

    Get PDF
    Background: Traditional Chinese medicine (CM) appears to be used worldwide, especially by cancer patients. The aim of the present study was to explore CM uses and CM non-users by patients with colorectal cancer (CRC).Materials and methods: A retrospective study was conducted using registration and claims data sets for 2007 from the National Health Insurance Research Database. Patients with colorectal cancer were identified from the Registry for Catastrophic illness Patients. Binary logistic regression was used to estimate odds ratios as the measure of association with the use of CM.Results: A total of 61,211 CRC patients diagnosed in 2007 were analysis. Most CM users preferred to visit private clinics (46.9%) with 306,599 visits. In contrast, the majority of CM non-users preferred to visit private hospitals (42.2%) with 538,769 visits. Among all 176,707 cancer-specific CM visit, there were 66.6% visits to CM outpatient department (OPD) of private hospitals, while in 477,612 non-cancer-specific CM visits, 62.0% was for private clinics. The proportion of expenses for diagnostic fees for CM user in CM visits was much less than that for WM visits and CM non-users (US4.6vs.29.3vs.33.5).TheaveragecostforCMuserinCMwaslessthanthatforWMvisitsandCMnon−users(US4.6 vs. 29.3 vs. 33.5). The average cost for CM user in CM was less than that for WM visits and CM non-users (US6.3 vs. 25.9 vs. 30.3). Female patients, younger age, and patients not living in the northern region, with higher EC or more comorbidities were more likely to receive CM treatment.Conclusion: The prevalence and costs of insurance-covered CM among CRC patients were low. Further longer longitudinal study is needed to follow up this trend.Key words: Chinese Medicine, Digestive System Neoplasms, Health Insuranc

    A new mib allele with a chromosomal deletion covering foxc1a exhibits anterior somite specification defect

    Get PDF
    mibnn2002, found from an allele screen, showed early segmentation defect and severe cell death phenotypes, which are different from previously known mib mutants. Despite distinct morphological phenotypes, the typical mib molecular phenotypes: her4 down-regulation, neurogenic phenotype and cold sensitive dlc expression pattern, still remained. The linkage analysis also indicated that mibnn2002 is a new mib allele. Failure of specification in anterior 7-10 somites is likely due to lack of foxc1a expression in mibnn2002 homozygotes. Somites and somite markers gradually appeared after 7-10 somite stage, suggesting that foxc1a is only essential for the formation of anterior 7-10 somites. Apoptosis began around 16-somite stage with p53 up-regulation. To find the possible links of mib, foxc1a and apoptosis, transcriptome analysis was employed. About 140 genes, including wnt3a, foxc1a and mib, were not detected in the homozygotes. Overexpression of foxc1a mRNA in mibnn2002 homozygotes partially rescued the anterior somite specification. In the process of characterizing mibnn2002 mutation, we integrated the scaffolds containing mib locus into chromosome 2 (or linkage group 2, LG2) based on synteny comparison and transcriptome results. Genomic PCR analysis further supported the conclusion and showed that mibnn2002 has a chromosomal deletion with the size of about 9.6 Mbp.published_or_final_versio

    Monolithic simulation of convection-coupled phase-change - verification and reproducibility

    Full text link
    Phase interfaces in melting and solidification processes are strongly affected by the presence of convection in the liquid. One way of modeling their transient evolution is to couple an incompressible flow model to an energy balance in enthalpy formulation. Two strong nonlinearities arise, which account for the viscosity variation between phases and the latent heat of fusion at the phase interface. The resulting coupled system of PDE's can be solved by a single-domain semi-phase-field, variable viscosity, finite element method with monolithic system coupling and global Newton linearization. A robust computational model for realistic phase-change regimes furthermore requires a flexible implementation based on sophisticated mesh adaptivity. In this article, we present first steps towards implementing such a computational model into a simulation tool which we call Phaseflow. Phaseflow utilizes the finite element software FEniCS, which includes a dual-weighted residual method for goal-oriented adaptive mesh refinement. Phaseflow is an open-source, dimension-independent implementation that, upon an appropriate parameter choice, reduces to classical benchmark situations including the lid-driven cavity and the Stefan problem. We present and discuss numerical results for these, an octadecane PCM convection-coupled melting benchmark, and a preliminary 3D convection-coupled melting example, demonstrating the flexible implementation. Though being preliminary, the latter is, to our knowledge, the first published 3D result for this method. In our work, we especially emphasize reproducibility and provide an easy-to-use portable software container using Docker.Comment: 20 pages, 8 figure

    Ultrasonic Characterization of Porosity in Composites

    Get PDF
    The determination of levels of porosity is important in the engineering uses of graphite fiber/polymer matrix composites, since the interlaminar shear strength can be greatly reduced by excessive porosity [1]. Research in making nondestructive evaluations using ultrasonics as the probing energy has taken many directions. Hsu [2] has successfully modeled the frequency dependent attenuation to predict porosity levels in composites. Kline [3] has extended the work of Hashsin and Rosen [4] to determine the porosity and fiber volume fraction of composites by solving for the elastic coefficients of the composite structure. The propagation of leaky Lamb waves [5] has also been used to model porosity levels

    Sampling-based Algorithms for Optimal Motion Planning

    Get PDF
    During the last decade, sampling-based path planning algorithms, such as Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g., as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e.g., showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e., such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.Comment: 76 pages, 26 figures, to appear in International Journal of Robotics Researc

    Single Gene Deletions of Orexin, Leptin, Neuropeptide Y, and Ghrelin Do Not Appreciably Alter Food Anticipatory Activity in Mice

    Get PDF
    Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA) involves temporally restricting unlimited food access (RF) to several hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR), giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA) but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY) and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA

    A database of microRNA expression patterns in Xenopus laevis

    Get PDF
    MicroRNAs (miRNAs) are short, non-coding RNAs around 22 nucleotides long. They inhibit gene expression either by translational repression or by causing the degradation of the mRNAs they bind to. Many are highly conserved amongst diverse organisms and have restricted spatio-temporal expression patterns during embryonic development where they are thought to be involved in generating accuracy of developmental timing and in supporting cell fate decisions and tissue identity. We determined the expression patterns of 180 miRNAs in Xenopus laevis embryos using LNA oligonucleotides. In addition we carried out small RNA-seq on different stages of early Xenopus development, identified 44 miRNAs belonging to 29 new families and characterized the expression of 5 of these. Our analyses identified miRNA expression in many organs of the developing embryo. In particular a large number were expressed in neural tissue and in the somites. Surprisingly none of the miRNAs we have looked at show expression in the heart. Our results have been made freely available as a resource in both XenMARK and Xenbase

    An early flame detection system based on image block threshold selection using knowledge of local and global feature analysis

    Full text link
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Fire is one of the mutable hazards that damage properties and destroy forests. Many researchers are involved in early warning systems, which considerably minimize the consequences of fire damage. However, many existing image-based fire detection systems can perform well in a particular field. A general framework is proposed in this paper which works on realistic conditions. This approach filters out image blocks based on thresholds of different temporal and spatial features, starting with dividing the image into blocks and extraction of flames blocks from image foreground and background, and candidates blocks are analyzed to identify local features of color, source immobility, and flame flickering. Each local feature filter resolves different false-positive fire cases. Filtered blocks are further analyzed by global analysis to extract flame texture and flame reflection in surrounding blocks. Sequences of successful detections are buffered by a decision alarm system to reduce errors due to external camera influences. Research algorithms have low computation time. Through a sequence of experiments, the result is consistent with the empirical evidence and shows that the detection rate of the proposed system exceeds previous studies and reduces false alarm rates under various environments

    Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs

    Full text link
    Non-conding RNAs play a key role in the post-transcriptional regulation of mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact with their target RNAs through protein-mediated, sequence-specific binding, giving rise to extended and highly heterogeneous miRNA-RNA interaction networks. Within such networks, competition to bind miRNAs can generate an effective positive coupling between their targets. Competing endogenous RNAs (ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk. Albeit potentially weak, ceRNA interactions can occur both dynamically, affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA networks as a whole can be implicated in the composition of the cell's proteome. Many features of ceRNA interactions, including the conditions under which they become significant, can be unraveled by mathematical and in silico models. We review the understanding of the ceRNA effect obtained within such frameworks, focusing on the methods employed to quantify it, its role in the processing of gene expression noise, and how network topology can determine its reach.Comment: review article, 29 pages, 7 figure
    • …
    corecore