5,966 research outputs found
Influence of terahertz waves on the fiber direction of CFRP composite laminates
The importance of Carbon-fiber reinforced plastics (CFRP) are widely utilized due to more high performance in engineering structures. It was well known that a nondestructive technique would be very beneficial. A new terahertz radiation has been recognized for their importance in technological applications. Recently, T-ray (terahertz ray) advances of technology and instrumentation has provided a probing field on the electromagnetic spectrum. The THz-TDS can be considered as a useful tool using general non-conducting materials; however it is quite limited to conducting materials. In order to solve various material properties, the index of refraction (n) and the absorption coefficient (α) are derived in reflective and transmission configuration using the terahertz time domain spectroscopy. However, the T-ray is limited in order to penetrate a conducting material to some degree. Here, the T-ray would not go through easily the CFRP composite laminates since carbon fibers are electrically conducting while the epoxy matrix is not. So, investigation of terahertz time domain spectroscopy (THz TDS) was made and reflection and transmission configurations were studied for a 48-ply thermoplastic PPS (poly-phenylene sulfide)-based CFRP solid laminate. It is found that the electrical conductivity of CFRP composites depends on the direction of unidirectional fibers. Also, the T-ray could penetrate a CFRP composite laminate a few ply based on the E-filed (Electrical field) of carbon fibers. The terahertz scanning images were made at the angles ranged from 0° to 180° with respect to the nominal fiber axis. So, the images were mapped out based on the electrical field (E-field) direction in the CFRP solid laminates. Also, using two-dimensional spatial Fourier transform, interface C-scan images were transformed into quantitatively angular distribution plots to show the fiber orientation information therein and to predict the orientation of the ply
Axion-Higgs Unification
In theories with no fundamental scalars, one gauge group can become strong at
a large scale Lambda and spontaneously break a global symmetry, producing the
Higgs and the axion as composite pseudo-Nambu-Goldstone bosons. We show how
KSVZ and DFSZ axion models can be naturally realised. The assumption Lambda
around 10^{11} GeV is phenomenologically favoured because: a) The axion solves
the QCD theta problem and provides the observed DM abundance; b) The observed
Higgs mass is generated via RGE effects from a small Higgs quartic coupling at
the compositeness scale, provided that the Higgs mass term is fine-tuned to be
of electroweak size; c) Lepton, quark as well as neutrino masses can be
obtained from four-fermion operators at the compositeness scale. d) The extra
fermions can unify the gauge couplings.Comment: 19 pages. Refs. added and eq. 3.6 fixe
Predictors of Successful Decannulation Using a Tracheostomy Retainer in Patients with Prolonged Weaning and Persisting Respiratory Failure
Background: For percutaneously tracheostomized patients with prolonged weaning and persisting respiratory failure, the adequate time point for safe decannulation and switch to noninvasive ventilation is an important clinical issue. Objectives: We aimed to evaluate the usefulness of a tracheostomy retainer (TR) and the predictors of successful decannulation. Methods: We studied 166 of 384 patients with prolonged weaning in whom a TR was inserted into a tracheostoma. Patients were analyzed with regard to successful decannulation and characterized by blood gas values, the duration of previous spontaneous breathing, Simplified Acute Physiology Score (SAPS) and laboratory parameters. Results: In 47 patients (28.3%) recannulation was necessary, mostly due to respiratory decompensation and aspiration. Overall, 80.6% of the patients could be liberated from a tracheostomy with the help of a TR. The need for recannulation was associated with a shorter duration of spontaneous breathing within the last 24/48 h (p < 0.01 each), lower arterial oxygen tension (p = 0.025), greater age (p = 0.025), and a higher creatinine level (p = 0.003) and SAPS (p < 0.001). The risk for recannulation was 9.5% when patients breathed spontaneously for 19-24 h within the 24 h prior to decannulation, but 75.0% when patients breathed for only 0-6 h without ventilatory support (p < 0.001). According to ROC analysis, the SAPS best predicted successful decannulation {[}AUC 0.725 (95% CI: 0.634-0.815), p < 0.001]. Recannulated patients had longer durations of intubation (p = 0.046), tracheostomy (p = 0.003) and hospital stay (p < 0.001). Conclusion: In percutaneously tracheostomized patients with prolonged weaning, the use of a TR seems to facilitate and improve the weaning process considerably. The duration of spontaneous breathing prior to decannulation, age and oxygenation describe the risk for recannulation in these patients. Copyright (c) 2012 S. Karger AG, Base
Health-related quality of life as measured with EQ-5D among populations with and without specific chronic conditions: A population-based survey in Shaanxi province, China
© 2013 Tan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Introduction: The aim of this study was to examine health-related quality of life (HRQoL) as measured by EQ-5D and to investigate the influence of chronic conditions and other risk factors on HRQoL based on a distributed sample located in Shaanxi Province, China. Methods: A multi-stage stratified cluster sampling method was performed to select subjects. EQ-5D was employed to measure the HRQoL. The likelihood that individuals with selected chronic diseases would report any problem in the EQ-5D dimensions was calculated and tested relative to that of each of the two reference groups. Multivariable linear regression models were used to investigate factors associated with EQ VAS. Results: The most frequently reported problems involved pain/discomfort (8.8%) and anxiety/depression (7.6%). Nearly half of the respondents who reported problems in any of the five dimensions were chronic patients. Higher EQ VAS scores were associated with the male gender, higher level of education, employment, younger age, an urban area of residence, access to free medical service and higher levels of physical activity. Except for anemia, all the selected chronic diseases were indicative of a negative EQ VAS score. The three leading risk factors were cerebrovascular disease, cancer and mental disease. Increases in age, number of chronic conditions and frequency of physical activity were found to have a gradient effect. Conclusion: The results of the present work add to the volume of knowledge regarding population health status in this area, apart from the known health status using mortality and morbidity data. Medical, policy, social and individual attention should be given to the management of chronic diseases and improvement of HRQoL. Longitudinal studies must be performed to monitor changes in HRQoL and to permit evaluation of the outcomes of chronic disease intervention programs. © 2013 Tan et al.National Nature Science Foundation (No. 8107239
Warped Riemannian metrics for location-scale models
The present paper shows that warped Riemannian metrics, a class of Riemannian
metrics which play a prominent role in Riemannian geometry, are also of
fundamental importance in information geometry. Precisely, the paper features a
new theorem, which states that the Rao-Fisher information metric of any
location-scale model, defined on a Riemannian manifold, is a warped Riemannian
metric, whenever this model is invariant under the action of some Lie group.
This theorem is a valuable tool in finding the expression of the Rao-Fisher
information metric of location-scale models defined on high-dimensional
Riemannian manifolds. Indeed, a warped Riemannian metric is fully determined by
only two functions of a single variable, irrespective of the dimension of the
underlying Riemannian manifold. Starting from this theorem, several original
contributions are made. The expression of the Rao-Fisher information metric of
the Riemannian Gaussian model is provided, for the first time in the
literature. A generalised definition of the Mahalanobis distance is introduced,
which is applicable to any location-scale model defined on a Riemannian
manifold. The solution of the geodesic equation is obtained, for any Rao-Fisher
information metric defined in terms of warped Riemannian metrics. Finally,
using a mixture of analytical and numerical computations, it is shown that the
parameter space of the von Mises-Fisher model of -dimensional directional
data, when equipped with its Rao-Fisher information metric, becomes a Hadamard
manifold, a simply-connected complete Riemannian manifold of negative sectional
curvature, for . Hopefully, in upcoming work, this will be
proved for any value of .Comment: first version, before submissio
Mitochondrial DNA Copy Number Is Associated with Breast Cancer Risk
Mitochondrial DNA (mtDNA) copy number in peripheral blood is associated with increased risk of several cancers. However, data from prospective studies on mtDNA copy number and breast cancer risk are lacking. We evaluated the association between mtDNA copy number in peripheral blood and breast cancer risk in a nested case-control study of 183 breast cancer cases with pre-diagnostic blood samples and 529 individually matched controls among participants of the Singapore Chinese Health Study. The mtDNA copy number was measured using real time PCR. Conditional logistic regression analyses showed that there was an overall positive association between mtDNA copy number and breast cancer risk (Ptrend = 0.01). The elevated risk for higher mtDNA copy numbers was primarily seen for women with <3 years between blood draw and cancer diagnosis; ORs (95% CIs) for 2nd, 3rd, 4th, and 5th quintile of mtDNA copy number were 1.52 (0.61, 3.82), 2.52 (1.03, 6.12), 3.12 (1.31, 7.43), and 3.06 (1.25, 7.47), respectively, compared with the 1st quintile (Ptrend = 0.004). There was no association between mtDNA copy number and breast cancer risk among women who donated a blood sample ≥3 years before breast cancer diagnosis (Ptrend = 0.41). This study supports a prospective association between increased mtDNA copy number and breast cancer risk that is dependent on the time interval between blood collection and breast cancer diagnosis. Future studies are warranted to confirm these findings and to elucidate the biological role of mtDNA copy number in breast cancer risk. © 2013 Thyagarajan et al
Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects
A three year field study (2007-2009) of the diversity and numbers of the total and metabolically active free-living diazotophic bacteria and total bacterial communities in organic and conventionally managed agricultural soil was conducted at the Nafferton Factorial Systems Comparison (NFSC) study, in northeast England. The result demonstrated that there was no consistent effect of either organic or conventional soil management across the three years on the diversity or quantity of either diazotrophic or total bacterial communities. However, ordination analyses carried out on data from each individual year showed that factors associated with the different fertility management measures including availability of nitrogen species, organic carbon and pH, did exert significant effects on the structure of both diazotrophic and total bacterial communities. It appeared that the dominant drivers of qualitative and quantitative changes in both communities were annual and seasonal effects. Moreover, regression analyses showed activity of both communities was significantly affected by soil temperature and climatic conditions. The diazotrophic community showed no significant change in diversity across the three years, however, the total bacterial community significantly increased in diversity year on year. Diversity was always greatest during March for both diazotrophic and total bacterial communities. Quantitative analyses using qPCR of each community indicated that metabolically active diazotrophs were highest in year 1 but the population significantly declined in year 2 before recovering somewhat in the final year. The total bacterial population in contrast increased significantly each year. Seasonal effects were less consistent in this quantitative study
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
Rapid restratification of the ocean surface boundary layer during the suppressed phase of the MJO in austral spring
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hsu, J.-Y., Feng, M., & Wijffels, S. Rapid restratification of the ocean surface boundary layer during the suppressed phase of the MJO in austral spring. Environmental Research Letters, 17(2), (2022): 024031, https://doi.org/10.1088/1748-9326/ac4f11.Rapid restratification of the ocean surface boundary layer in the Indonesian-Australian Basin was captured in austral spring 2018, under the conditions of low wind speed and clear sky during the suppressed phase of Madden–Julian Oscillations (MJOs). Despite sunny days, strong diurnal variations of sea surface temperature (SST) were not observed until the wind speed became extremely low, because the decreasing wind speed modulated the latent heat flux. Combined with the horizontal advection of ocean current, the reduced upward heat loss inhibited the nighttime convective mixing and facilitated the restratification of the subsurface ocean layers. The surface mixed layer was thus shoaled up to 40 m in two days. The restratified upper ocean then sustained high SSTs by trapping heat near the sea surface until the onset of the MJO convection. This restratification process might be initialized under the atmospheric downwelling conditions during the suppressed phase of MJOs. The resulted high SSTs may affect the development and trajectories of MJOs, by enhancing air-sea heat and moisture fluxes as the winds pick up. Simulating this detailed interaction between the near-surface ocean and atmospheric features of MJOs remains a challenge, but with sufficient vertical resolution and realistic initial conditions, several features of the observations can be well captured.This work is funded by the project of 'Coupled warm pool dynamics in the Indo-Pacific' under the CSHOR. CSHOR is a joint initiative between the Qingdao National Laboratory for Marine Science and Technology (QNLM), CSIRO, University of New South Wales and University of Tasmania
- …
