15,308 research outputs found

    Merging high-resolution satellite-based precipitation fields and point-scale rain gauge measurements-A case study in Chile

    Get PDF
    With high spatial-temporal resolution, Satellite-based Precipitation Estimates (SPE) are becoming valuable alternative rainfall data for hydrologic and climatic studies but are subject to considerable uncertainty. Effective merging of SPE and ground-based gauge measurements may help to improve precipitation estimation in both better resolution and accuracy. In this study, a framework for merging satellite and gauge precipitation data is developed based on three steps, including SPE bias adjustment, gauge observation gridding, and data merging, with the objective to produce high-quality precipitation estimates. An inverse-root-mean-square-error weighting approach is proposed to combine the satellite and gauge estimates that are in advance adjusted and gridded, respectively. The model is applied and tested with the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) estimates (daily, 0.04° × 0.04°) over Chile, for the 6 year period of 2009-2014. Daily observations from about 90% of collected gauges over the study area are used for model calibration; the rest of the gauged data are regarded as ground “truth” for validation. Evaluation results indicate high effectiveness of the model in producing high-resolution-precision precipitation data. Compared to reference data, the merged data (daily) show correlation coefficients, probabilities of detection, root-mean-square errors, and absolute mean biases that were consistently improved from the original PERSIANN-CCS estimates. The cross-validation evidences that the framework is effective in providing high-quality estimates even over nongauged satellite pixels. The same method can be applied globally and is expected to produce precipitation products in near real time by integrating gauge observations with satellite estimates

    Connectivity of consecutive-d digraphs

    Get PDF
    AbstractThe concept of consecutive-d digraph is proposed by Du, Hsu and Hwang. It generalizes the class of de Bruijin digraphs, the class of Imase-Itoh digraphs and the class of generalized de Bruijin graphs. We modify consecutive-d digraphs by connecting nodes with a loop into a circuit and deleting all loops. The result in this paper shows that the link-connectivity or the connectivity of modified consecutive-d digraphs get better

    Quantitative Simulation of the Superconducting Proximity Effect

    Full text link
    A numerical method is developed to calculate the transition temperature of double or multi-layers consisting of films of super- and normal conductors. The approach is based on a dynamic interpretation of Gorkov's linear gap equation and is very flexible. The mean free path of the different metals, transmission through the interface, ratio of specular reflection to diffusive scattering at the surfaces, and fraction of diffusive scattering at the interface can be included. Furthermore it is possible to vary the mean free path and the BCS interaction NV in the vicinity of the interface. The numerical results show that the normalized initial slope of an SN double layer is independent of almost all film parameters except the ratio of the density of states. There are only very few experimental investigations of this initial slope and they consist of Pb/Nn double layers (Nn stands for a normal metal). Surprisingly the coefficient of the initial slope in these experiments is of the order or less than 2 while the (weak coupling) theory predicts a value of about 4.5. This discrepancy has not been recognized in the past. The autor suggests that it is due to strong coupling behavior of Pb in the double layers. The strong coupling gap equation is evaluated in the thin film limit and yields the value of 1.6 for the coefficient. This agrees much better with the few experimental results that are available. PACS: 74.45.+r, 74.62.-c, 74.20.F

    Fisher Renormalization for Logarithmic Corrections

    Get PDF
    For continuous phase transitions characterized by power-law divergences, Fisher renormalization prescribes how to obtain the critical exponents for a system under constraint from their ideal counterparts. In statistical mechanics, such ideal behaviour at phase transitions is frequently modified by multiplicative logarithmic corrections. Here, Fisher renormalization for the exponents of these logarithms is developed in a general manner. As for the leading exponents, Fisher renormalization at the logarithmic level is seen to be involutory and the renormalized exponents obey the same scaling relations as their ideal analogs. The scheme is tested in lattice animals and the Yang-Lee problem at their upper critical dimensions, where predictions for logarithmic corrections are made.Comment: 10 pages, no figures. Version 2 has added reference

    Continuous-Variable Spatial Entanglement for Bright Optical Beams

    Get PDF
    A light beam is said to be position squeezed if its position can be determined to an accuracy beyond the standard quantum limit. We identify the position and momentum observables for bright optical beams and show that position and momentum entanglement can be generated by interfering two position, or momentum, squeezed beams on a beam splitter. The position and momentum measurements of these beams can be performed using a homodyne detector with local oscillator of an appropriate transverse beam profile. We compare this form of spatial entanglement with split detection-based spatial entanglement.Comment: 7 pages, 3 figures, submitted to PR

    Severe discrepancies between experiment and theory in the superconducting proximity effect

    Full text link
    The superconducting proximity effect is investigated for SN double layers in a regime where the resulting transition temperature T_{c} does not depend on the mean free paths of the films and, within limits, not on the transparency of the interface. This regime includes the thin film limit and the normalized initial slope S_{sn}= (d_{s}/T_{s})|dT_{c}/dd_{n}|. The experimental results for T_{c} are compared with a numerical simulation which was recently developed in our group. The results for the SN double layers can be devided into three groups: (i) When N = Cu, Ag, Au, Mg a disagreement between experiment and theory by a factor of the order of three is observed, (ii) When N = Cd, Zn, Al the disagreement between experiment and theory is reduced to a factor of about 1.5, (iii) When N = In, Sn a reasonably good agreement between experiment and theory is observed
    • …
    corecore