22,941 research outputs found

    Multi-chord fiber-coupled interferometer with a long coherence length laser

    Full text link
    This paper describes a 561 nm laser heterodyne interferometer that provides time-resolved measurements of line-integrated plasma electron density within the range of 10^15-10^18 cm^(-2). Such plasmas are produced by railguns on the Plasma Liner Experiment (PLX), which aims to produce \mu s-, cm-, and Mbar-scale plasmas through the merging of thirty plasma jets in a spherically convergent geometry. A long coherence length, 320 mW laser allows for a strong, sub-fringe phase-shift signal without the need for closely-matched probe and reference path lengths. Thus only one reference path is required for all eight probe paths, and an individual probe chord can be altered without altering the reference or other probe path lengths. Fiber-optic decoupling of the probe chord optics on the vacuum chamber from the rest of the system allows the probe paths to be easily altered to focus on different spatial regions of the plasma. We demonstrate that sub-fringe resolution capability allows the interferometer to operate down to line-integrated densities of order 10^15 cm^(-2).Comment: submitted to Rev. Sci. Instrum. (2011

    Tendency of spherically imploding plasma liners formed by merging plasma jets to evolve toward spherical symmetry

    Full text link
    Three dimensional hydrodynamic simulations have been performed using smoothed particle hydrodynamics (SPH) in order to study the effects of discrete jets on the processes of plasma liner formation, implosion on vacuum, and expansion. The pressure history of the inner portion of the liner was qualitatively and quantitatively similar from peak compression through the complete stagnation of the liner among simulation results from two one dimensional radiationhydrodynamic codes, 3D SPH with a uniform liner, and 3D SPH with 30 discrete plasma jets. Two dimensional slices of the pressure show that the discrete jet SPH case evolves towards a profile that is almost indistinguishable from the SPH case with a uniform liner, showing that non-uniformities due to discrete jets are smeared out by late stages of the implosion. Liner formation and implosion on vacuum was also shown to be robust to Rayleigh-Taylor instability growth. Interparticle mixing for a liner imploding on vacuum was investigated. The mixing rate was very small until after peak compression for the 30 jet simulation.Comment: 28 pages, 16 figures, submitted to Physics of Plasmas (2012

    Coal desulfurization by low temperature chlorinolysis, phase 1

    Get PDF
    The reported activity covers laboratory scale experiments on twelve bituminous, sub-bituminous and lignite coals, and preliminary design and specifications for bench-scale and mini-pilot plant equipment

    Synthesis and Characterization of SiO 2

    Get PDF
    Chemical mechanical polishing (CMP) technology is extensively used in the global planarization of highly value-added and large components in the aerospace industry. A nanopowder of SiO2 was prepared by the sol-gel method and was compounded into polishing slurry for the CMP of steel substrate. The size of the SiO2 abrasives was controlled by varying the sol-gel reaction conditions. The polishing efficacy of nano-SiO2 was studied, and the CMP mechanism with nanosized abrasives was further investigated. The proposed methods can produce SiO2 abrasives whose size can be controlled by varying the sol-gel reaction conditions. The size of the SiO2 abrasives was controlled in the range from 58 to 684 nm. The roughness of the steel substrate strongly depends on the size of the abrasive, and the surface roughness decreases as the abrasive size declines. A super-smooth surface with a roughness of 8.4 nm is obtained with nanosized SiO2. Ideal CMP slurry can be used to produce material surfaces with low roughness, excellent global planarization, high selectivity, an excellent finish, and a low-defected rate

    High speed quantum gates with cavity quantum electrodynamics

    Get PDF
    Cavity quantum electrodynamic schemes for quantum gates are amongst the earliest quantum computing proposals. Despite continued progress, and the dramatic recent demonstration of photon blockade, there are still issues with optimal coupling and gate operation involving high-quality cavities. Here we show dynamic control techniques that allow scalable cavity-QED based quantum gates, that use the full bandwidth of the cavities. When applied to quantum gates, these techniques allow an order of magnitude increase in operating speed, and two orders of magnitude reduction in cavity Q, over passive cavity-QED architectures. Our methods exploit Stark shift based Q-switching, and are ideally suited to solid-state integrated optical approaches to quantum computing.Comment: 4 pages, 3 figures, minor revision

    Optically Thin Metallic Films for High-radiative-efficiency Plasmonics

    Get PDF
    Plasmonics enables deep-subwavelength concentration of light and has become important for fundamental studies as well as real-life applications. Two major existing platforms of plasmonics are metallic nanoparticles and metallic films. Metallic nanoparticles allow efficient coupling to far field radiation, yet their synthesis typically leads to poor material quality. Metallic films offer substantially higher quality materials, but their coupling to radiation is typically jeopardized due to the large momentum mismatch with free space. Here, we propose and theoretically investigate optically thin metallic films as an ideal platform for high-radiative-efficiency plasmonics. For far-field scattering, adding a thin high-quality metallic substrate enables a higher quality factor while maintaining the localization and tunability that the nanoparticle provides. For near-field spontaneous emission, a thin metallic substrate, of high quality or not, greatly improves the field overlap between the emitter environment and propagating surface plasmons, enabling high-Purcell (total enhancement > 10410^4), high-quantum-yield (> 50 %) spontaneous emission, even as the gap size vanishes (3\sim5 nm). The enhancement has almost spatially independent efficiency and does not suffer from quenching effects that commonly exist in previous structures.Comment: Supporting Information not included but freely available from DOI:10.1021/acs.nanolett.6b0085

    Nonmagnetic impurity perturbation to the quasi-two-dimensional quantum helimagnet LiCu2O2

    Full text link
    A complete phase diagram of Zn substituted quantum quasi-two-dimensional helimagnet LiCu2O2 has been presented. Helical ordering transition temperature (T_h) of the original LiCu2O2 follows finite size scaling for less than ~ 5.5% Zn substitution, which implies the existence of finite helimagnetic domains with domain boundaries formed with nearly isolated spins. Higher Zn substitution > 5.5% quenches the long-range helical ordering and introduces an intriguing Zn level dependent magnetic phase transition with slight thermal hysteresis and a universal quadratic field dependence for T_c (Zn > 0.055,H). The magnetic coupling constants of nearest-neighbor (nn) J1 and next-nearest-neighbor (nnn) J2 (alpha=J2/J1) are extracted from high temperature series expansion (HTSE) fitting and N=16 finite chain exact diagonalization simulation. We have also provided evidence of direct correlation between long-range helical spin ordering and the magnitude of electric polarization in this spin driven multiferroic material

    Continuous-Variable Spatial Entanglement for Bright Optical Beams

    Get PDF
    A light beam is said to be position squeezed if its position can be determined to an accuracy beyond the standard quantum limit. We identify the position and momentum observables for bright optical beams and show that position and momentum entanglement can be generated by interfering two position, or momentum, squeezed beams on a beam splitter. The position and momentum measurements of these beams can be performed using a homodyne detector with local oscillator of an appropriate transverse beam profile. We compare this form of spatial entanglement with split detection-based spatial entanglement.Comment: 7 pages, 3 figures, submitted to PR

    An experimental study on Γ\Gamma(2) modular symmetry in the quantum Hall system with a small spin-splitting

    Full text link
    Magnetic-field-induced phase transitions were studied with a two-dimensional electron AlGaAs/GaAs system. The temperature-driven flow diagram shows the features of the Γ\Gamma(2) modular symmetry, which includes distorted flowlines and shiftted critical point. The deviation of the critical conductivities is attributed to a small but resolved spin splitting, which reduces the symmetry in Landau quantization. [B. P. Dolan, Phys. Rev. B 62, 10278.] Universal scaling is found under the reduction of the modular symmetry. It is also shown that the Hall conductivity could still be governed by the scaling law when the semicircle law and the scaling on the longitudinal conductivity are invalid. *corresponding author:[email protected]: The revised manuscript has been published in J. Phys.: Condens. Matte

    Order parameter of MgB_2: a fully gapped superconductor

    Full text link
    We have measured the low-temperature specific heat C(T) for polycrystalline MgB_2 prepared by high pressure synthesis. C(T) below 10 K vanishes exponentially, which unambiguously indicates a fully opened superconducting energy gap. However, this gap is found to be too small to account for Tc of MgB_2. Together with the small specific heat jump DeltaC/gamma_nTc=1.13, scenarios like anisotropic s-wave or multi-component order parameter are called for. The magnetic field dependence of gamma(H) is neither linear for a fully gapped s-wave superconductor nor H^1/2 for nodal order parameter. It seems that this intriguing behavior of gamma(H) is associated with the intrinsic electronic properties other than flux pinning.Comment: 7 pages, 5 figures; revised text and figures; references updated, Phys. Rev. Lett., in pres
    corecore