692 research outputs found

    Assessment of the Multipath Mitigation Effect of Vector Tracking in an Urban Environment

    Get PDF
    Today, smart mobiles play an important role in our daily life. Most of these devices are equipped with a navigation function based on GNSS positioning. However, these devices may not work accurately in urban environments due to severe multipath interference and non-line of sight (NLOS) reception caused by nearby buildings. A promising approach for reducing the effect of multipath interference and NLOS reception is vector tracking (VT). VT is well-known for its robustness against poor signal-to-noise levels. However, its capability against multipath and NLOS has yet to be determined. The new combination of this paper is therefore to evaluate the performance of vector tracking in the presence of multipath and NLOS effects. A vector delay lock loop (VDLL) is used as the vector tracking technique. The noise tuning of the extended Kalman filter (EKF) in vector tracking is a key factor affecting its performance. Therefore, developed an adaptive noise tuning algorithm had been based on the measurement innovation. In order to evaluate vector tracking’s performance, equivalent conventional tracking loops are used as a control. GNSS signals were collected, while walking around in a challenging urban environment subject to multipath interference. The experimental results show that VT generates a more stable code numerical-controlled oscillator (NCO) frequency than CT does. This characteristic could reduce the impact of multipath interference which is reflected in a smaller position error using VT during most of run. To further test capability of VT against signal attenuation, this paper applies a signal cancellation method called direct signal cancellation algorithm to simulate the scenario of signal termination and NLOS reception. According to the simulation, VT provides not only robustness against signal termination but can also detect NLOS reception without any external aiding

    Multipath mitigation technique under strong multipath environment using multiple antennas

    Get PDF
    2016-2017 > Academic research: refereed > Publication in refereed journal201804_a bcmaVersion of RecordPublishe

    Efficacy and tolerability of bevacizumab plus capecitabine as first-line therapy in patients with advanced hepatocellular carcinoma

    Get PDF
    Molecularly targeted agents with anti-angiogenic activity, including bevacizumab, have demonstrated clinical activity in patients with advanced /metastatic hepatocellular carcinoma (HCC). This multicentre phase II study involving patients from several Asian countries sought to evaluate the safety and efficacy of bevacizumab plus capecitabine in this population. METHODS: Histologically proven/clinically diagnosed advanced HCC patients received bevacizumab 7.5 mg kg(-1) on day 1 and capecitabine 800 mg m(-2) twice daily on days 1-14 every 3 weeks as first-line therapy. RESULTS: A total of 45 patients were enrolled; 44 (96%) had extrahepatic metastasis and/or major vessel invasion and 30( 67%) had hepatitis B. No grade 3/4 haematological toxicity occurred. Treatment-related grade 3/4 non-haematological toxicities included diarrhoea (n = 2, 4%), nausea/ vomiting ( n = 1, 2%), gastrointestinal bleeding (n = 4, 9%) and hand- foot syndrome (n = 4, 9%). The overall response rate ( RECIST) was 9% and the disease control rate was 52%. Overall , median progression-free survival (PFS) and overall survival(OS) were 2.7 and 5.9 months, respectively. Median PFS and OS were 3.6 and 8.2 months, respectively, for Cancer of the Liver Italian Programme (CLIP) score <= 3 patients, and 1.4 and 3.3 months, respectively, for CLIP score 4 patients. CONCLUSION: The bevacizumab-capecitabine combination shows good tolerability and modest anti-tumour activity in patients with advanced HCC

    Treatment with a BH3 mimetic overcomes the resistance of latency III EBV (+) cells to p53-mediated apoptosis

    Get PDF
    P53 inactivation is often observed in Burkitt's lymphoma (BL) cells due to mutations in the p53 gene or overexpression of its negative regulator, murine double minute-2 (MDM2). This event is now considered an essential part of the oncogenic process. Epstein–Barr virus (EBV) is strongly associated with BL and is a cofactor in its development. We previously showed that nutlin-3, an antagonist of MDM2, activates the p53 pathway in BL cell lines harboring wild-type p53. However, nutlin-3 strongly induced apoptosis in EBV (−) or latency I EBV (+) cells, whereas latency III EBV (+) cells were much more resistant. We show here that this resistance to apoptosis is also observed in latency III EBV (+) lymphoblastoid cell lines. We also show that, in latency III EBV (+) cells, B-cell lymphona 2 (Bcl-2) is selectively overproduced and interacts with Bcl-2-associated X protein (Bax), preventing its activation. The treatment of these cells with the Bcl-2-homology domain 3 mimetic ABT-737 disrupts Bax/Bcl-2 interaction and allows Bax activation by nutlin-3. Furthermore, treatment with these two compounds strongly induces apoptosis. Thus, a combination of Mdm2 and Bcl-2 inhibitors might be a useful anti-cancer strategy for diseases linked to EBV infection

    Comprehensive analysis of human microRNA target networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) mediate posttranscriptional regulation of protein-coding genes by binding to the 3' untranslated region of target mRNAs, leading to translational inhibition, mRNA destabilization or degradation, depending on the degree of sequence complementarity. In general, a single miRNA concurrently downregulates hundreds of target mRNAs. Thus, miRNAs play a key role in fine-tuning of diverse cellular functions, such as development, differentiation, proliferation, apoptosis and metabolism. However, it remains to be fully elucidated whether a set of miRNA target genes regulated by an individual miRNA in the whole human microRNAome generally constitute the biological network of functionally-associated molecules or simply reflect a random set of functionally-independent genes.</p> <p>Methods</p> <p>The complete set of human miRNAs was downloaded from miRBase Release 16. We explored target genes of individual miRNA by using the Diana-microT 3.0 target prediction program, and selected the genes with the miTG score ≧ 20 as the set of highly reliable targets. Then, Entrez Gene IDs of miRNA target genes were uploaded onto KeyMolnet, a tool for analyzing molecular interactions on the comprehensive knowledgebase by the neighboring network-search algorithm. The generated network, compared side by side with human canonical networks of the KeyMolnet library, composed of 430 pathways, 885 diseases, and 208 pathological events, enabled us to identify the canonical network with the most significant relevance to the extracted network.</p> <p>Results</p> <p>Among 1,223 human miRNAs examined, Diana-microT 3.0 predicted reliable targets from 273 miRNAs. Among them, KeyMolnet successfully extracted molecular networks from 232 miRNAs. The most relevant pathway is transcriptional regulation by transcription factors RB/E2F, the disease is adult T cell lymphoma/leukemia, and the pathological event is cancer.</p> <p>Conclusion</p> <p>The predicted targets derived from approximately 20% of all human miRNAs constructed biologically meaningful molecular networks, supporting the view that a set of miRNA targets regulated by a single miRNA generally constitute the biological network of functionally-associated molecules in human cells.</p

    Enhanced Membrane Pore Formation through High-Affinity Targeted Antimicrobial Peptides

    Get PDF
    Many cationic antimicrobial peptides (AMPs) target the unique lipid composition of the prokaryotic cell membrane. However, the micromolar activities common for these peptides are considered weak in comparison to nisin, which follows a targeted, pore-forming mode of action. Here we show that AMPs can be modified with a high-affinity targeting module, which enables membrane permeabilization at low concentration. Magainin 2 and a truncated peptide analog were conjugated to vancomycin using click chemistry, and could be directed towards specific membrane embedded receptors both in model membrane systems and whole cells. Compared with untargeted vesicles, a gain in permeabilization efficacy of two orders of magnitude was reached with large unilamellar vesicles that included lipid II, the target of vancomycin. The truncated vancomycin-peptide conjugate showed an increased activity against vancomycin resistant Enterococci, whereas the full-length conjugate was more active against a targeted eukaryotic cell model: lipid II containing erythrocytes. This study highlights that AMPs can be made more selective and more potent against biological membranes that contain structures that can be targeted

    Green Fluorescent Protein (GFP) Color Reporter Gene Visualizes Parvovirus B19 Non-Structural Segment 1 (NS1) Transfected Endothelial Modification

    Get PDF
    Background: Human Parvovirus B19 (PVB19) has been associated with myocarditis putative due to endothelial infection. Whether PVB19 infects endothelial cells and causes a modification of endothelial function and inflammation and, thus, disturbance of microcirculation has not been elucidated and could not be visualized so far. Methods and Findings: To examine the PVB19-induced endothelial modification, we used green fluorescent protein (GFP) color reporter gene in the non-structural segment 1 (NS1) of PVB19. NS1-GFP-PVB19 or GFP plasmid as control were transfected in an endothelial-like cell line (ECV304). The endothelial surface expression of intercellular-adhesion molecule-1 (CD54/ICAM-1) and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) were evaluated by flow cytometry after NS-1-GFP or control-GFP transfection. To evaluate platelet adhesion on NS-1 transfected ECs, we performed a dynamic adhesion assay (flow chamber). NS-1 transfection causes endothelial activation and enhanced expression of ICAM-1 (CD54: mean±standard deviation: NS1-GFP vs. control-GFP: 85.3±11.2 vs. 61.6±8.1; P<0.05) and induces endothelial expression of EMMPRIN/CD147 (CD147: mean±SEM: NS1-GFP vs. control-GFP: 114±15.3 vs. 80±0.91; P<0.05) compared to control-GFP transfected cells. Dynamic adhesion assays showed that adhesion of platelets is significantly enhanced on NS1 transfected ECs when compared to control-GFP (P<0.05). The transfection of ECs was verified simultaneously through flow cytometry, immunofluorescence microscopy and polymerase chain reaction (PCR) analysis. Conclusions: GFP color reporter gene shows transfection of ECs and may help to visualize NS1-PVB19 induced endothelial activation and platelet adhesion as well as an enhanced monocyte adhesion directly, providing in vitro evidence of possible microcirculatory dysfunction in PVB19-induced myocarditis and, thus, myocardial tissue damage

    Assessing mechanical integrity of spinal fusion by in situ endochondral osteoinduction in the murine model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Historically, radiographs, micro-computed tomography (micro-CT) exams, palpation and histology have been used to assess fusions in a mouse spine. The objective of this study was to develop a faster, cheaper, reproducible test to directly quantify the mechanical integrity of spinal fusions in mice.</p> <p>Methods</p> <p>Fusions were induced in ten mice spine using a previously described technique of in situ endochondral ossification, harvested with soft tissue, and cast in radiolucent alginate material for handling. Using a validated software package and a customized mechanical apparatus that flexed and extended the spinal column, the amount of intervertebral motion between adjacent vertebral discs was determined with static flexed and extended lateral spine radiographs. Micro-CT images of the same were also blindly reviewed for fusion.</p> <p>Results</p> <p>Mean intervertebral motion between control, non-fused, spinal vertebral discs was 6.1 ± 0.2° during spine flexion/extension. In fusion samples, adjacent vertebrae with less than 3.5° intervertebral motion had fusions documented by micro-CT inspection.</p> <p>Conclusions</p> <p>Measuring the amount of intervertebral rotation between vertebrae during spine flexion/extension is a relatively simple, cheap (<$100), clinically relevant, and fast test for assessing the mechanical success of spinal fusion in mice that compared favorably to the standard, micro-CT.</p
    corecore