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Abstract This paper presents normal time–frequency
transform (NTFT) application in harmonic/quasi-harmonic
signal prediction. Particularly, we use the normal wavelet
transform (a special NTFT) to make long-term polar motion
prediction. Instantaneous frequency, phase and amplitude of
Chandler wobble, prograde and retrograde annual wobbles
of Earth’s polar motion are analyzed via the NTFT. Results
show that the three main wobbles can be treated as quasi-
harmonic processes. Current instantaneous harmonic infor-
mation of the three wobbles can be acquired by the NTFT
that has a kernel function constructed with a normal half-
window function. Based on this information, we make the
polar motion predictions with lead times of 1 year and 5 years.
Results show that our prediction skills are very good with
long lead time. An abnormality in the predictions occurs dur-
ing the second half of 2005 and first half of 2006. Finally,
we provide the future (starting from 2013) polar motion pre-
dictions with 1- and 5-year leads. These predictions will be
used to verify the effectiveness of the method proposed in
this paper.
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1 Introduction

Polar motion is Earth’s rotation axis movement with respect
to its crust. It is a significant component of Earth orientation
parameters (EOPs). In general, EOPs are available with a
delay of hours to days because of complex data processing
procedures. The growing demand from spacecraft tracking
and navigation has intensified the researches on EOP predic-
tions (Kalarus et al. 2010; Xu et al. 2012).

Various techniques have also been developed and applied
to the polar motion prediction, including those presented by
Petrov et al. (1995), Kosek et al. (1998), Kosek (2002), Schuh
et al. (2002), Akulenko et al. (2002), Akyilmaz and Kutterer
(2004), Akyilmaz et al. (2011), and Liao et al. (2012). These
methods either estimate the parameters of harmonic func-
tions and extrapolate them into the future or use stochas-
tic models such as autoregressive integrated moving aver-
age processes and Kalman filter with atmospheric angular
momentum forecast. A combination of these methods is used
for the polar motion prediction (Xu et al. 2012) and the
comparison between these methods has also been conducted
(Kalarus et al. 2010; Kosek et al. 2007).

These methods work well for short-term prediction. How-
ever, their performance is not satisfactory in mid-term and
long-term predictions because of increasing prediction error
with lead time. On one hand, the limited prediction accu-
racy is caused by the variable amplitude of Chandler and
annual wobbles and short-period oscillations (which have
amplitudes up to several mass and even tens of them) (Zhu
1982). On the other hand, in these methods, the instantaneous
harmonic information (including frequency, amplitude and
phase) of the polar motion is not taken into account although
such information is necessary for the polar motion prediction.

The polar motion is the sum of two statically inde-
pendent parts: trend and undulation. Thus, polar motion
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prediction consists of trend prediction and undulation pre-
diction. A trend item can be obtained via linear least squares
adjustment. The acquired fitting parameter can be applied to
trend prediction as well.

However, no tool as simple as the linear least squares
adjustment exists for undulation prediction which is the focus
of this study. The instantaneous frequency, phase and ampli-
tude of the undulation can be obtained via time–frequency
analysis. Normal time–frequency transform (NTFT) pro-
posed by Liu and Hsu (2009, 2012) is designed for unbi-
ased measurement of the instantaneous frequency, phase and
amplitude of a time series. Its rescaling index μ(�) can be a
constant as in Gabor transform or linear as in wavelet trans-
form, but even quadratic, cubic or any other function can
be used to construct other unnamed transforms. The NTFT
is used to construct the prediction model that considers the
information coming from both time and frequency domains
rather than the information coming from pure time or fre-
quency domain. For the first time, this study uses the time–
frequency analysis method (i.e., the NTFT) to predict the
polar motion.

In practice, the closer to the current time the time series
data are, the more useful they are for prediction. However, the
edge effect existing in the time–frequency analysis method
makes the time–frequency analysis results at the current time
(i.e., the end of the observation) implausible. In order to
obtain the instantaneous frequency, amplitude and phase at
the current time, half-window can be used to construct the
kernel function of the NTFT.

This paper is organized as follows. Section 2 introduces
the NTFT concept and explains how it works for time–
frequency analysis and prediction. In Sect. 3, based on the
normal wavelet transform (a special NTFT), we present the
time–frequency analysis of the polar motion and illuminate
the predictability of long-term polar motion. In Sect. 4, the
NTFT with its kernel function using the half-window is
applied to the long-term polar motion predictions. Section 5
provides the conclusion.

2 Normal time–frequency transform for prediction

The NTFT has been proposed by Liu and Hsu (2009, 2012);
refer to these studies for detailed proof and properties of the
NTFT) and is defined as follows.

Definition 2.1 A local time functionw(t) ∈ L1(R) is called
a normal window if

ŵ(ω) = ∣
∣ŵ(ω)

∣
∣ = Maximum = 1 ⇔ ω = 0 (1)

where ŵ(ω) = F [w(t)]ω ,F [·]ω is Fourier transform (FT)
operator, “|·|” denotes modulus operator, and “⇔” means “if
and only if”. ŵ(ω)is a function of ω. Equation (1) means

that if and only if ω = 0, function ŵ(ω) = ∣
∣ŵ(ω)

∣
∣ and

meanwhile |ŵ(ω)| gets its maximum with the value of 1.
We suppose that �(R) is being used to denote the set of all
normal windows.

Definition 2.2 For a time series f (t), its NTFT � is defined
as

� f (τ,�) =
∫

R

f (t)ψ∗(t − τ,�)dt, τ,� ∈ R (2)

where τ is the time index, � is the frequency index, ‘*’
denotes the complex conjugation operator, and transform ker-
nel ψ(t,�) satisfies

ψ̂(ω,�) =
∣
∣
∣ψ̂(ω,�)

∣
∣
∣ = Maximum = 1 ⇔ ω = � (3)

in which ψ̂(ω,�) = F [ψ(t,�)]ω and ψ̂(ω,�) is func-
tion of ω and � . The meaning of relation (3) is similar to
relation (1).

A typical NTFT kernel can be constructed as

ψ(t,�) = |μ(�)|w(μ(�)t) exp(i� t), w(t) ∈ �(R),

(μ(�) ∈ R) ˙�=0 (4)

where dot means “almost anywhere”. The rescaling index
μ(�) can be almost anything other than zero, for instance,
�, � 2/3, � 5 and so on. Lettingμ(�) = 1 in Eq. (4) yields
a phase-updated GT and letting μ(�) = � in Eq. (4) yields
a normal wavelet transform. In this study, the latter is used
for the time–frequency analysis and for the long-term polar
motion prediction.

For a multi-component signal f (t) that consists of
n sub-signals h1(t), h2(t), . . . , hn(t) with frequencies of
�1,�2, . . . ,�n , respectively,

f (t) = h1(t)+h2(t)+· · ·+hn(t) = A1 exp(i�1t)

+A2 exp(i�2t)+· · ·+ An exp(i�nt) (5)

where A1, A2, . . . , An are complex, its NTFT is

� f (τ,�) = h1(τ )ŵ

(
�−�1

μ(�)

)

+h2(τ )ŵ

(
�−�2

μ(�)

)

+ · · · + hn(τ )ŵ

(
� −�n

μ(�)

)

(6)

We fix the parameter τk as the current observation time. Let-
ting τ = τk and� = �1,�2, . . . ,�n , respectively, one has
⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

� f (τk ,�1)=h1(τk)+h2(τk)ŵ
(
�1−�2
μ(�1)

)

+· · ·+hn(τk)ŵ
(
�1−�n
μ(�1)

)

� f (τk ,�2)=h1(τk)ŵ
(
�2−�1
μ(�2)

)

+h2(τk)+· · ·+hn(τk)ŵ
(
�2−�n
μ(�2)

)

· · ·
� f (τk ,�n)=h1(τk)ŵ

(
�n−�1
μ(�n )

)

+h2(τk)ŵ
(
�n−�2
μ(�n )

)

+· · ·+hn(τk)

(7)
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Equation groups (7) can be rewritten as

T = WE (8)

where

T =

⎡

⎢
⎢
⎢
⎣

� f (τk,�1)

� f (τk,�2)
...

� f (τk,�n)

⎤

⎥
⎥
⎥
⎦
,

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ŵ
(
�1−�2
μ(�1)

)

· · · ŵ
(
�1−�n
μ(�1)

)

ŵ
(
�2−�1
μ(�2)

)

1 · · · ŵ
(
�2−�n
μ(�2)

)

...
...

...
...

ŵ
(
�n−�1
μ(�n)

)

ŵ
(
�n−�2
μ(�n)

)

· · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and

E =

⎡

⎢
⎢
⎢
⎣

h1(τk)

h2(τk)
...

hn(τk)

⎤

⎥
⎥
⎥
⎦

(9)

Vector T represents NTFT coefficients, matrix W represents
the frequency resolution (Liu and Hsu 2009) or harmonic
amplitude weight (Liu and Hsu 2012), and vector E denotes
the sub-signals at τk . The matrix W comes from the nor-
mal window and is independent of sub-signals, providing
the basis for sub-signal component separation.

Note that the width of the normal window must not be
extremely narrow to ensure the matrix W invertible. The
detailed width depends on the distance between�1,�2, . . . ,

�n . Then, sub-signals at τk can be obtained as

E = W−1T (10)

where the W−1 means the inverse matrix of the matrix W .

Thus, the signal f (t) can be extrapolated by

f (τk + M) = E

⎡

⎢
⎢
⎢
⎣

exp(i�1 M)
exp(i�2 M)
...

exp(i�n M)

⎤

⎥
⎥
⎥
⎦

(11)

where M is the extrapolation step, i.e., lead time. We use the
instantaneous frequency, amplitude and phase at the current
observation time τk to extrapolate the signal. So the current
instantaneous information is important for prediction.

In practice, the signals are usually quasi-harmonic. If the
frequency, amplitude and phase of the quasi-harmonic signal
vary slowly, the prediction method mentioned above is also
suitable.

3 Time–frequency analysis of the polar motion

3.1 Data source and preparation

In this study, the polar motion (PMx and PMy) time series
covering the period from January 1, 1962 to December 31,
2012 is downloaded from the website of IERS Earth Orienta-
tion Center (ftp://hpiers.obspm.fr/iers/eop/eopc04-05). The
sampling interval is 1 day. We constructed the complex polar
motion series, which has a real part of PMx and an imaginary
part of PMy.

We use the linear least squares adjustment to get the trend
model of the polar motion. Thus, the detrended polar motion
can be obtained by subtracting the trend model from the polar
motion. The detrended polar motion is used to analyze the
time–frequency characteristics of the polar motion.

3.2 Spectrum analysis of the polar motion

We obtained the normalized spectrum of the detrended polar
motion using fast Fourier transform (FFT), as shown in Fig. 1.

Fig. 1 Normalized spectrum of
the detrended polar motion by
FFT
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Fig. 2 The instantaneous frequency (a) and amplitude (b) of Chandler wobble (I), prograde (II) and retrograde (III) annual wobbles obtained via
the normal wavelet transform

Fig. 3 The detrended polar
motion (the gray line) and its
corresponding fitting model (the
black line)
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Chandler wobble, prograde and retrograde annual compo-
nents can be seen with periods of approximately 432, 365,
and −366 days, respectively. Excitations to the latter two are
almost identical. The response of the prograde annual wobble
to the excitations is larger than the retrograde annual wob-
ble, because the prograde annual wobble is rather closer in

frequency to the Chandler wobble than the retrograde annual
wobble.

The spectrum reflects only the averaged frequency. It can-
not reflect the varying of frequency and amplitude with time.
The instantaneous time–frequency parameters can be cap-
tured only through the time–frequency analysis.
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Fig. 4 The polar motion series (the gray line), the IERS “Bulletin A”
predictions (the black dash line) and the NTFT predictions (the black
line) from 2003 to 2012. The kernel function of NTFT is constructed

as ψ(t,�) = |� |w(� t) exp(i� t), in which w(t) is chosen as Eqs.
(13) and (14) with l = 12π days or higher.
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Fig. 4 continued

3.3 Time–frequency analysis of the polar motion

The normal wavelet transform is used to analyze the
detrended polar motion. Its kernel function is constructed
as ψ(t,�) = |� |w(� t) exp(i� t) and w(t) is the normal
Hamming window, i.e.,

w (t) = (1.08l)−1
{

0.54 + 0.46 cos (π t/ l)
0

|t | ≤ l
otherwise

(12)

In order to separate the three wobbles, l = 100 according to

the time–frequency resolution (Liu and Hsu 2009). The unit
of t is day.

There are three maximum ridges along the time–frequency
direction in the normal wavelet transform spectrum. The nor-
mal wavelet transform coefficients along the three ridges are
nearly the three wobbles, respectively. Then we can extract
the three wobbles at different times. The instantaneous fre-
quency and amplitude of the three wobbles are computed
and are shown in Fig. 2. We can also get fitting model of the
detrended polar motion by adding the three main wobbles
together, as shown in Fig. 3. Only the wobbles without edge
effect are shown in Figs. 2 and 3.

It can be seen from Fig. 2 that the frequency and amplitude
of the Chandler wobble, prograde and retrograde annual wob-
bles of the polar motion are slowly varying with time. So they
can be considered as quasi-harmonic processes. Thus, instan-
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taneous frequency and amplitude are necessary to depict the
time–frequency characteristics of these wobbles. These fac-
tors are also the basis for the normal wavelet transform to
predict the long-term polar motion.

The correlation between actual and fitting values is 0.9896
and 0.9907 for the PMx and for the PMy, respectively. The
Root-mean-square error (RMSE) between them is 19.73 and
21.4 mas for the PMx and for the PMy, respectively. Both
correlation coefficient and RMSE indicate the feasibility of
the normal wavelet transform for long-term polar motion pre-
diction.

4 Prediction of the polar motion

The detrended polar motion is quasi-harmonic. Therefore,
the instantaneous time–frequency information of the polar
motion at the current time should be the most useful for
predicting its future. However, a natural problem in time–
frequency analysis methods is edge effect. The edge effect
makes the time–frequency analysis results at the current time
implausible.

In order to obtain the accurate time–frequency informa-
tion at the current time, we use the normal half-window to
construct the kernel function. In the rest of this paper, numer-
ical examples use the normal half-Hamming window, i.e., if
� ≥ 0,

w (t)=2 (1.08l)−1
{

(0.54+0.46 cos (π t/ l))
0

−l ≤ t ≤ 0
otherwise

(13)

and if � ≤ 0

w (t)=2 (1.08l)−1
{

(0.54+0.46 cos (π t/ l))
0

0 ≤ t ≤ l
otherwise

(14)

In Eqs. (13) and (14), l(>0) denotes the original width of the
window. The unit of t is day. We can get the instantaneous fre-
quency, amplitude and phase at the current time using only
the history data. It is the accurate instantaneous informa-
tion at the current time, especially the phase information,
that makes the NTFT particularly suitable for the long-term
prediction.

The detailed steps are as follows: (1) The detrended polar
motion is calculated by subtracting the linear trend from the
polar motion series; (2) The instantaneous frequencies of
sub-signals at the current time are determined through its
normal wavelet transform spectrum; (3) Take the instanta-
neous frequencies into Eq. (7), then we can get the instan-
taneous time–frequency information at current time by Eq.
(10); and (4) Extrapolate the polar motion series according
to Eq. (11).

Table 1 Correlation coefficient between the polar motion series and
predictions

Prediction year IERS “Bulletin A” NTFT

PMx PMy PMx PMy

2003 – – 0.9967 0.9985

2004 – – 0.9974 0.9969

2005 0.9769 0.9329 0.9940 0.9344

2006 0.9769 0.9833 0.9494 0.9420

2007 0.9978 0.9948 0.9964 0.9933

2008 0.9974 0.9971 0.9987 0.9992

2009 0.9944 0.9912 0.9886 0.9971

2010 0.9305 0.9907 0.9906 0.9894

2011 0.9767 0.9885 0.9877 0.9985

2012 0.9668 0.9737 0.9767 0.9812

Mean value 0.9772 0.9815 0.9876 0.9830

Table 2 RMSE (mas) of the predictions

Prediction year IERS “Bulletin A” NTFT

PMx PMy PMx PMy

2003 – – 21.97 13.51

2004 – – 19.56 21.91

2005 24.84 30.40 14.00 29.10

2006 11.65 25.36 28.06 19.20

2007 16.73 11.94 10.27 14.04

2008 26.96 28.15 13.91 14.67

2009 25.25 27.14 19.38 22.45

2010 37.39 33.77 21.38 19.64

2011 18.75 17.75 21.47 19.63

2012 29.20 36.12 14.94 18.48

Mean value 23.85 26.33 18.49 19.26

Table 3 RMSE (mas) of the predictions by other methods

Lead time /days PMx PMy

180 360 180 360

Kosek
et al.
(2007)

LS 60.4 45.8 61.4 46.8

LS+AR (AIC) 23.5 33.1 26.9 34

LS+AR (emp) 23.8 29.5 25.3 30.6

Akyilmaz
et al.
(2011)

Fuzzy-wavelet 32.82 39.79 35.60 38.51

FIS 29.123 34.983 31.612 31.252

Liao et al.
(2012)

ANN 32.82 39.79 35.60 38.51

This paper NTFT 16.52 18.49 17.71 19.26
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Fig. 5 The polar motion series (the gray line) and the NTFT predictions (the black line) from 1997. The kernel function of NTFT is constructed
as ψ(t,�) = |� |w(� t) exp(i� t), in which w(t) is chosen as Eqs. (13) and (14) with l = 20π days or higher
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Fig. 5 continued
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Table 4 Correlation coefficient and RMSE (mas) of 5-year-lead pre-
dictions

Current observation
time

Correlation coefficient RMSE/mas

PMx PMy PMx PMy

Dec. 31, 1996 0.9648 0.9599 51.19 52.48

Dec. 31, 1997 0.9611 0.9428 48.30 48.86

Dec. 31, 1998 0.9756 0.9712 41.83 35.92

Dec. 31, 1999 0.9757 0.9728 40.80 34.67

Dec. 31, 2000 0.9655 0.9617 42.47 39.11

Dec. 31, 2001 0.9589 0.9474 35.86 38.92

Dec. 31, 2002 0.9200 0.9205 44.85 43.83

Dec. 31, 2003 0.8588 0.8463 59.63 59.21

Dec. 31, 2004 0.8553 0.8746 65.06 56.83

Dec. 31, 2005 0.8829 0.8986 65.35 56.18

Dec. 31, 2006 0.9632 0.9554 45.30 44.05

Dec. 31, 2007 0.9569 0.9739 35.39 31.93

Mean value 0.9366 0.9354 48.00 45.17

4.1 One-year-lead prediction

One-year-lead predictions from 2003 to 2012 are obtained
with the steps described above. The results are compared with
the IERS “Bulletin A” predictions that have the comparable
lead time. The prediction accuracies are measured by the
correlation coefficient and RMSE as well. The results are
shown in Fig. 4 and the statistical results are listed in Tables
1 and 2.

Table 1 shows that the correlations in the predictions of
2006 are particularly smaller compared with others in the
NTFT method. This result is caused by the abnormality dur-
ing the second half of 2005 and first half of 2006, as indicated
in the Sect. 4.2. The statistical results of 10 predictions show
that the observations and predictions are highly correlated
with the average degree of more than 0.98 for both PMx and
PMy.

The mean RMSE of PMx and PMy is 18.49 and 19.26 mas
in the NTFT method, respectively, which is less than that
of IERS “Bulletin A”. This mean value is significantly less
than that of other methods listed in Table 3. Furthermore, the
RMSE of other methods (Table 3) increases with lead time,
while the RMSE of the NTFT method changes a little (not
more than 2 mas) with the lead time.

4.2 Five-year-lead prediction

Our method can also be used for considerably longer-term
prediction. From 1997, 5-year-lead predictions are made. The
results are shown in Fig. 5. Correlation coefficient and RMSE
are also used to assess prediction accuracy. Both are listed in
Table 4.

An abnormality during the second half of 2005 and first
half of 2006 can be seen in Fig. 5. The abnormality causes
a phase delay of approximately 40 days. This delay is sig-
nificant in predictions for 2007, 2008, and 2009 as shown
in Fig. 5g–j. In Fig. 5k–l, the predictions starting from
2007 and 2008 return to the normal state. It indicates that
the non-stationary behavior of the polar motion process
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Fig. 6 The 1-year-lead predictions obtained through IERS “Bulletin A” (the dash line) and NTFT method (the black line) for 2013 (a) and
5-year-lead predictions from 2013 to 2017 (b) by NTFT.
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during 2005–2006 causes the poor 5-year-lead predictions
from 2003 to 2008, 2004 to 2009, 2005 to 2010 and 2006
to 2011.

The observations and 5-year-lead predictions are highly
correlated with the correlation coefficient larger than 0.93
for both PMx and PMy. The average RMSEs for the
PMx and the PMy are 48.00 and 45.17 mas, respec-
tively.

4.3 Predictions after 2013

The 1-year-lead predictions for 2013 and 5-year-lead pre-
dictions from 2013 to 2017 are reported in Fig. 6. Parame-
ters associated with the algorithm are selected as shown in
previous figures. The predictions can be used to verify the
effectiveness of the algorithm.

5 Conclusion

In this paper, we explain how the NTFT can be used
for time–frequency analysis and long-term prediction. The
Chandler wobble, prograde and retrograde annual wobbles
of the polar motion can be considered as quasi-harmonic
processes, as indicated by the NTFT. Based on these factors,
a prediction method based on the NTFT is proposed. The
NTFT with a half-window captures the instantaneous fre-
quency, amplitude and phase accurately at the current time.
It enables our method particularly suitable for long-term pre-
diction.

In the numerical examples, the mean correlation between
the observations and 1-year-lead predictions are higher than
0.98, and the correlation is higher than 0.93 in the case of
the 5-year-lead prediction. The mean RMSE of the 1-year-
lead prediction is less than that of other methods listed in
Table 3. The comparison between the IERS “Bulletin A” and
the NTFT predictions shows that our approach performs bet-
ter in 1-year-lead prediction. Furthermore, the 5-year-lead
predictions also can be made.

The difficult period for the 5-year-lead predictions is the
second half of 2005 and first half of 2006. There is an abnor-
mal phase delay of approximately 40 days. Finally, 1-year-
lead predictions for 2013 and 5-year-lead predictions from
2013 to 2017 are provided.
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