36,782 research outputs found

    Light weight fire resistant graphite composites

    Get PDF
    Composite structures with a honeycomb core and characterized by lightweight and excellent fire resistance are provided. These sandwich structures employ facesheets made up of bismaleimide-vinyl styrylpyridine copolymers with fiber reinforcement such as carbon fiber reinforcement. In preferred embodiments the facesheets are over layered with a decorative film. The properties of these composites make them attractive materials of construction aircraft and spacecraft

    Lacie phase 1 Classification and Mensuration Subsystem (CAMS) rework experiment

    Get PDF
    An experiment was designed to test the ability of the Classification and Mensuration Subsystem rework operations to improve wheat proportion estimates for segments that had been processed previously. Sites selected for the experiment included three in Kansas and three in Texas, with the remaining five distributed in Montana and North and South Dakota. The acquisition dates were selected to be representative of imagery available in actual operations. No more than one acquisition per biophase were used, and biophases were determined by actual crop calendars. All sites were worked by each of four Analyst-Interpreter/Data Processing Analyst Teams who reviewed the initial processing of each segment and accepted or reworked it for an estimate of the proportion of small grains in the segment. Classification results, acquisitions and classification errors and performance results between CAMS regular and ITS rework are tabulated

    Sagnac Interferometer Enhanced Particle Tracking in Optical Tweezers

    Full text link
    A setup is proposed to enhance tracking of very small particles, by using optical tweezers embedded within a Sagnac interferometer. The achievable signal-to-noise ratio is shown to be enhanced over that for a standard optical tweezers setup. The enhancement factor increases asymptotically as the interferometer visibility approaches 100%, but is capped at a maximum given by the ratio of the trapping field intensity to the detector saturation threshold. For an achievable visibility of 99%, the signal-to-noise ratio is enhanced by a factor of 200, and the minimum trackable particle size is 2.4 times smaller than without the interferometer

    Dragging a polymer chain into a nanotube and subsequent release

    Full text link
    We present a scaling theory and Monte Carlo (MC) simulation results for a flexible polymer chain slowly dragged by one end into a nanotube. We also describe the situation when the completely confined chain is released and gradually leaves the tube. MC simulations were performed for a self-avoiding lattice model with a biased chain growth algorithm, the pruned-enriched Rosenbluth method. The nanotube is a long channel opened at one end and its diameter DD is much smaller than the size of the polymer coil in solution. We analyze the following characteristics as functions of the chain end position xx inside the tube: the free energy of confinement, the average end-to-end distance, the average number of imprisoned monomers, and the average stretching of the confined part of the chain for various values of DD and for the number of monomers in the chain, NN. We show that when the chain end is dragged by a certain critical distance x∗x^* into the tube, the polymer undergoes a first-order phase transition whereby the remaining free tail is abruptly sucked into the tube. This is accompanied by jumps in the average size, the number of imprisoned segments, and in the average stretching parameter. The critical distance scales as x∗∼ND1−1/νx^*\sim ND^{1-1/\nu}. The transition takes place when approximately 3/4 of the chain units are dragged into the tube. The theory presented is based on constructing the Landau free energy as a function of an order parameter that provides a complete description of equilibrium and metastable states. We argue that if the trapped chain is released with all monomers allowed to fluctuate, the reverse process in which the chain leaves the confinement occurs smoothly without any jumps. Finally, we apply the theory to estimate the lifetime of confined DNA in metastable states in nanotubes.Comment: 13pages, 14figure

    X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue

    Full text link
    AGN are known to have complex X-ray spectra that depend on both the properties of the accreting SMBH (e.g. mass, accretion rate) and the distribution of obscuring material in its vicinity ("torus"). Often however, simple and even unphysical models are adopted to represent the X-ray spectra of AGN. In the case of blank field surveys in particular, this should have an impact on e.g. the determination of the AGN luminosity function, the inferred accretion history of the Universe and also on our understanding of the relation between AGN and their host galaxies. We develop a Bayesian framework for model comparison and parameter estimation of X-ray spectra. We take into account uncertainties associated with X-ray data and photometric redshifts. We also demonstrate how Bayesian model comparison can be used to select among ten different physically motivated X-ray spectral models the one that provides a better representation of the observations. Despite the use of low-count spectra, our methodology is able to draw strong inferences on the geometry of the torus. For a sample of 350 AGN in the 4 Ms Chandra Deep Field South field, our analysis identifies four components needed to represent the diversity of the observed X-ray spectra: (abridged). Simpler models are ruled out with decisive evidence in favour of a geometrically extended structure with significant Compton scattering. Regarding the geometry of the obscurer, there is strong evidence against both a completely closed or entirely open toroidal geometry, in favour of an intermediate case. The additional Compton reflection required by data over that predicted by toroidal geometry models, may be a sign of a density gradient in the torus or reflection off the accretion disk. Finally, we release a catalogue with estimated parameters such as the accretion luminosity in the 2-10 keV band and the column density, NHN_{H}, of the obscurer.Comment: 28 pages, 18 figures, catalogue available from https://www.mpe.mpg.de/~jbuchner/agn_torus/analysis/cdfs4Ms_cat/, software available from https://github.com/JohannesBuchner/BX

    Effective interactions between star polymers

    Full text link
    We study numerically the effective pair potential between star polymers with equal arm lengths and equal number ff of arms. The simulations were done for the soft core Domb-Joyce model on the simple cubic lattice, to minimize corrections to scaling and to allow for an unlimited number of arms. For the sampling, we used the pruned-enriched Rosenbluth method (PERM). We find that the potential is much less soft than claimed in previous papers, in particular for f≫1f\gg 1. While we verify the logarithmic divergence of V(r)V(r), with rr being the distance between the two cores, predicted by Witten and Pincus, we find for f>20f>20 that the Mayer function is hardly distinguishable from that for a Gaussian potential.Comment: 5 pages, 5 figure
    • …
    corecore