504 research outputs found
A Digital Analysis Of The Reported Earnings Of Asian Firms
Prior research (Carslaw, 1988; Thomas, 1989) has noted unusual patterns in the frequency of occurrence of certain digits contained in reported earnings. Employing digital analysis, studies have found that managers in the U.S. and Australia may round reported earnings numbers to achieve income-smoothing objectives. This study extends prior literature by examining whether reported earnings of firms from six Asian countries: South Korea, Malaysia, Philippines, Singapore, Thailand and China follow similar patterns
Phylogenetic analysis and biochemical characterization of a thermostable dihydropyrimidinase from alkaliphilic Bacillus sp TS-23
Two degenerate primers established from the alignment of highly conserved amino acid sequences of bacterial dihydropyrimidinases (DHPs) were used to amplify a 330-bp gene fragment from the genomic DNA of Bacillus sp. TS-23 and the amplified DNA was successfully used as a probe to clone a dhp gene from the strain. The open reading frame of the gene consisted of 1422 bp and was deduced to contain 472 amino acids with a molecular mass of 52 kDa. The deduced amino acid sequence exhibited greater than 45% identity with that of prokaryotic D-hydantoinases and eukaryotic DHPs. Phylogenetic analysis showed that Bacillus sp. TS-23 DHP is grouped together with Bacillus stearothermophilus D-hydantoinase and related to dihydroorotases and allantoinases from various organisms. His(6)-tagged DHP was over-expressed in Escherichia coli and purified by immobilized metal affinity chromatography to a specific activity of 3.46 U mg(-1) protein. The optimal pH and temperature for the purified enzyme were 8.0 and 60 degrees C, respectively. The half-life of His(6)-tagged DHP was 25 days at 50 degrees C. The enzyme activity was stimulated by Co2+ and Mn2+ ions. His(6)-tagged DHP was most active toward dihydrouracil followed by hydantoin derivatives. The catalytic efficiencies (k(cat)/K-m) of the enzyme for dihydrouracil and hydantoin were 2.58 and 0.61 s(-1) mM(-1), respectively
Screening of compactin-resistant microorganisms capable of converting compactin to pravastatin
A simple method of using compactin for effective screening of microbial strains with high hydroxylation activity at the 6 beta position of compactin was developed. Agar plates containing different carbon sources and 500 mu g compactin mL(-1) were used to screen the microorganisms that can convert compactin to pravastatin. About 100 compactin-resistant strains were isolated from the Basal agar containing 7% (w/v) mannitol as a carbon source, in which two bacteria, Pseudomocardia autotrophica BCRC 12444 and Streptomyces griseolus BCRC 13677, capable of converting compactin to pravastatin with the yield of 20 and 32% (w/w), respectively, were found. High-performance liquid chromatography using C-18 column and two sequential mobile phases, 30% and 50% (v/v) acetonitrile, was also established to simultaneously determine the concentration of compactin and pravastatin in the culture broth. As such, about 2% of target microorganisms could be obtained from the screening program
Characterization study of GaN-based epitaxial layer and light-emitting diode on nature-patterned sapphire substrate
[[abstract]]Chemical wet etching on c-plane sapphire wafers by three etching solutions (H3PO4, H2SO4, and H3PO4/H2SO4 mixing solution) was studied. Among these etching agents, the mixing H3PO4/H2SO4 solution has the fastest etching rate (1.5 ÎŒm/min). Interestingly, we found that H2SO4 does not etch the c-plane sapphire wafer in thickness; instead, a facet pyramidal pattern is formed on the c-plane sapphire wafer. GaN light-emitting diode (LED) epitaxial structure was grown on the sapphire wafer with the pyramidal pattern and the standard flat sapphire wafer. X-ray diffraction and photoluminescence measurement show that the pyramidal pattern on the sapphire wafer improved crystalline quality but augmented the compressive stress level in the GaN LED epilayer. The horizontal LED chips fabricated on the pyramidal-patterned sapphire wafer have a larger light output than the horizontal LED chips fabricated on the standard flat sapphire wafer by 20%.[[notice]]èŁæŁćźçą[[incitationindex]]SCI[[booktype]]çŽæŹ[[booktype]]é»ć
Mutational Analysis of Splicing Activities of Ribonucleotide Reductase alpha Subunit Protein from Lytic Bacteriophage P1201
A CP1201 RIR1 intein is found in the ribonucleotide reductase alpha subunit (RNR alpha subunit) protein of lytic bacteriophage P1201 from Corynebacterium glutamicum NCHU 87078. This intein can be over-expressed and spliced in Escherichia coli NovaBlue cells. Mutations of C539, the N-terminal residue of the C-extein in the CP1201 RIR1 protein, led to the changes of pattern and level of protein-splicing activities. A G392S variant was found to be a temperature-sensitive protein with complete splicing activity at 17 and 28 degrees C but not at 37 degrees C or higher. We also found that the cleavage at the CP1201 RIR1 intein C-terminus of the double mutant G392S/C539G was blocked, but other cleavage activities could be efficiently performed at 17 degrees C. G392S/C539G variant possessed the properties of low-temperature-induced cleavage at the intein N-terminus
A thermostable leucine aminopeptidase from Bacillus kaustophilus CCRC 11223
Two degenerate primers established from the consensus sequences of bacterial leucine aminopeptidases (LAP) were used to amplify a 360-bp gene fragment from the chromosomal DNA of thermophilic Bacillus kaustophilus CCRC 11223 and the amplified fragment was successfully used as a probe to clone a leucine aminopeptidase (lap) gene from a genomic library of the strain. The gene consists of an open reading frame (ORF) of 1,494 bp and encodes a protein of 497 amino acid residues with a calculated molecular mass of 53.7 kDa. The complete amino acid sequence of the cloned enzyme showed greater than 30% identity with prokaryotic and eukaryotic LAPs. Phylogenetic analysis showed that B. kaustophilus LAP is closely related to the enzyme from Bacillus subtilis and is grouped with the M17 family. His(6)-tagged LAP was generated in Escherichia coli by cloning the coding region into pQE-30 and the recombinant enzyme was purified by nickel-chelate chromatography. The pH and temperature optima for the purified enzyme were 8 and 65degreesC, respectively, and 50% of its activity remained after incubation at 60degreesC for 32 min. The enzyme preferentially hydrolyzed L-leucine-p-nitroanilide (L-Leu-p-NA) followed by Cys derivative
Unravelling the Interfacial Dynamics of Bandgap Funneling in Bismuth-Based Halide Perovskites
An environmentally friendly mixed-halide perovskite MA3Bi2Cl9âxIx with a bandgap funnel structure has been developed. However, the dynamic interfacial interactions of bandgap funneling in MA3Bi2Cl9âxIx perovskites in the photoelectrochemical (PEC) system remain ambiguous. In light of this, single- and mixed-halide lead-free bismuth-based hybrid perovskitesâMA3Bi2Cl9âyIy and MA3Bi2I9 (named MBCl-I and MBI)âin the presence and absence of the bandgap funnel structure, respectively, are prepared. Using temperature-dependent transient photoluminescence and electrochemical voltammetric techniques, the photophysical and (photo)electrochemical phenomena of solidâsolid and solidâliquid interfaces for MBCl-I and MBI halide perovskites are therefore confirmed. Concerning the mixed-halide hybrid perovskites MBCl-I with a bandgap funnel structure, stronger electronic coupling arising from an enhanced overlap of electronic wavefunctions results in more efficient exciton transport. Besides, MBCl-I's effective diffusion coefficient and electron-transfer rate demonstrate efficient heterogeneous charge transfer at the solidâliquid interface, generating improved photoelectrochemical hydrogen production. Consequently, this combination of photophysical and electrochemical techniques opens up an avenue to explore the intrinsic and interfacial properties of semiconductor materials for elucidating the correlation between material characterization and device performance
A Four-Gene Signature from NCI-60 Cell Line for Survival Prediction in Non-Small Cell Lung Cancer
Purpose: Metastasis is the main cause of mortality in non-small cell lung cancer (NSCLC) patients. Genes that can discriminate the invasion ability of cancer cells may become useful candidates for clinical outcome prediction. We identify invasion-associated genes through computational and laboratorial approach that supported this idea in NSCLC. Experimental Design: We first conducted invasion assay to characterize the invasion abilities of NCI-60 lung cancer cell lines. We then systematically exploited NCI-60 microarray databases to identify invasion-associated genes that showed differential expression between the high and the low invasion cell line groups. Furthermore, using the microarray data of Duke lung cancer cohort (GSE 3141), invasion-associated genes with good survival prediction potentials were obtained. Finally, we validated the findings by conducting quantitative PCR assay on an in-house collected patient group (n = 69) and by using microarray data from two public western cohorts (n = 257 and 186). Results: The invasion-associated four-gene signature (ANKRD49, LPHN1, RABAC1, and EGLN2) had significant prediction in three validation cohorts (P = 0.0184, 0.002, and 0.017, log-rank test). Moreover, we showed that four-gene signature was an independent prognostic factor (hazard ratio, 2.354, 1.480, and 1.670; P = 0.028, 0.014, and 0.033), independent of other clinical covariates, such as age, gender, and stage. Conclusion: The invasion-associated four-gene signature derived from NCI-60 lung cancer cell lines had good survival prediction power for NSCLC patients. (Clin Cancer Res 2009;15(23):7309-15
Stepwise formation of heteronuclear coordination networks based on quadruple-bonded dimolybdenum units containing formamidinate ligands
Reactions of [Mo2(4-pyf)4] (4-Hpyf = 4-pyridylformamidine) with
HgX2 (X = Cl, Br and I) afforded the first 2D and 3D heteronuclear
coordination networks based on quadruple-bonded dimolybdenum
units
- âŠ