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This paper describes an optical implementation o f  a fully con- 
nected neural network similar to the Hopfield network. Experi- 
mental results which demonstrate i t s  ability to recognize stored 
images are given, followed by a discussion of  i ts performance a n d  
analysis based on a proposed model for the system. 

I .  INTRODUCTION 

In this paper we present a holographic implementation 
of a fully connected neural network [I], [2]. This model has 
a simple structure and i s  relatively easy to implement while 
i ts  operating principles and characteristics can be extended 
to other types of networks, since any architecture can be 
considered as a fully connected network with some of i t s  
connections missing. In the following sections, the basic 
principlesof the fully connected networkare reviewed.The 
optical implementation of the network is presented in Sec- 
tion Ill and itsexperimental results are presented in Section 
IV. Special attention i s  focused on the dynamics of the feed- 
back loop and the trade-off between distortion tolerance 
and image-recognition capability of the associative mem- 
ory. Mathematical modeling and analysis of the system are 
presented in Section V. 

. 

II. THE HOPFIELD MEMORY 

The basic structure of the network i s  shown in Fig. 1. It 
i s  a single-layer network with feedback. There are two main 
components: the neurons and the interconnections. The 
neurons are distributed in the neural plane. The neurons 
receive inputs, perform nonlinear thresholding on the 
received input, provide gain, and re-emit the output pat- 
terns. The output of each unit i s  connected to the input of 
all other neurons to form a feedback network. 
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Fig. 1. Two dimensional fully connected network. 

There are two phases in the operation of the network: 
learning and recall. In the learning phase, the information 
to be stored i s  recorded according to the outer product 
scheme [I], [2]. This storage specifies the interconnection 
strengths between the neurons. In the recall phase, an 
external input i s  presented to the system. The state of the 
system then evolves according to the correlation between 
the input and the stored data. M N-bit binary words are 
stored in a matrix w,,, according to 

/ M  

otherwise, 

where vT = + I ,  i = 1, . . . , N, is  the i t h  bit of the moth 
memory. Suppose, for example, that vmo, the mth stored 
vector, i s  presented to the system in the recall phase. This 
vector is  multiplied by the matrix w,,,, giving the output of 
the first iteration: 

vo = sgn [jl w,,,v:..], (2) 

where sgn{ . }  is  the thresholding function, 

1, if  x 2 0; 

-1 ,  i f x  < 0. 
sgn{x} = (3) 

The thresholded result of the first iteration is then fed back 
to the system as input for the next iteration, and so on. 
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There are three operations performed by the system: vec- 
tor-matrix multiplication, thresholding? and feedback. A 
network of this type using optoelectronics was first imple- 
mented by Psaltis, Farhat, and their colleagues [3], [4]. They 
used a computer-generated transparency to provide the 
interconnection matrix. A I -D array of 32 photodiode pairs 
followed by electronic thresholding plus a I -D  array of 32 
LEDs was used to simulate 32 neurons. In this paper the 
optical implementation of such a system for2-D images uses 
holograms. The design and implementation of this system 
are presented in the following section. 

Ill. OPTICAL IMPLEMENTATION 

The interconnection pattern for 2-D images is  described 
by the following equation: 

M 

~ ( x ,  Y; F ,  7) = ,,,?, frn(x, y)frn(t, v ) ,  (4) 

where f,,,(x, y )  i s  the mth image, and M is  the total number 
of images to be stored. Note that o ( x ,  y; F ,  7) i s  a four dimen- 
sional kernel and cannot be implemented directly using a 
single transparency since a 2-D optical system has onlytwo 
spatial coordinates. The system described in this paper i s  
based on a method for implementing this 4 D  kernel that 
uses a 2-D array of spatial frequency multiplexed holograms 
[3], [SI, [6]. Jang et al. used a 2-D array of N x N diffused ho- 
lograms to obtain the 4-D interconnection [7J, [SI. Other 
approaches to this problem include the use of spatial mul- 
tiplexing [9] and volume holograms [101-[13]. 

In the recall phase, the output of the system is described 
by the equation 

f (x ,  y, t )  = g [ 1 1 W(x, y; t ,  ~ t ,  7, wtQj .  (5) 

where g{ e }  represents the nonlinear thresholding of the 
neurons, f ( x ,  yf t )  i s  the input to the system at time t ,  and 
?(x, y, t )  i s  the output of the system. Substituting the expres- 
sion for o ( x ,  y; t ,  7) into this equation, and rearranging the 
order of integration and summation, we obtain 

?(x, yt t)  = g [jl frn(xt y )  [ 1 1 f r n ( t t  7) 

* f(t - x, 7 - y, OdFd?] 1. (6) 

From (6) we see that the implementation of the 2-D asso- 
ciative memory can be achieved in three steps [6]. First the 
2-D correlation between the input image f and each of the 
memories f,,, i s  calculated, and then the correlation func- 
tion i s  evaluated at the origin to obtain the inner product 
values. Second, each inner product i s  multiplied by the 
associated stored memory. Third, these products are 
summed over all memories and thresholded by the neu- 
rons. 

The implementation of the system will be explained with 
the aid of Fig. 2. Here four images are spatially separated 
and stored as the reference images in each of two corre- 
lators. When one of the stored patterns A i s  presented at 
plane Pl of the system, the first correlator produces the auto- 
correlation along with three cross-correlations of plane Pz. 
The pinhole array at f2  samples these correlation functions 
at the center of each pattern where the inner products 

x = 0, y = 0 

"SzSztmd Pl 

Fig. 2. Block diagram of the operations performed by the 
optical loop. 

between the input and each of the stored images form. Each 
of the four signalsthat pass through thepinholesactasdelta 
functions, reconstructing from the second correlator the 
four images that are stored there. These reconstructed 
images are spatially translated according to the position of 
each pinhole and superimposed at plane f,. At the center 
of the output plane of the second correlator we obtain the 
superposition of the four stored images. The stored image 
that is most similar to the input pattern gives the strongest 
correlation signal, hence the brightest reconstructed image. 
In Fig. 2 we show only the image that i s  reconstructed by 
the strongest auto-correlation peak. The weak read-out sig- 
nal that is  due to cross-correlations is  suppressed by the 
thresholding operation of the neurons. The output from 
the plane of neurons becomes the new input image for the 
next iteration. In this way the stable pattern that i s  estab- 
lished in the loop is  typically the stored image that is most 
similar to the original input. 

The optical implementation makes use of the Vander Lugt 
correlator [I41 shown in Fig. 3. If we place a hologram at the 

Input Fourlar output 
pkne 

.. ./ 
Fig. 3. Vander Lugt correlator. 

Fourier plane of the system in Fig. 3 whose transmittance 
function i s  the complex conjugate of the Fourier transform 
of a second, reference image, then it can be shown that the 
output is the 2-D correlation function between the input 
and reference images [151. In our system, the reference 
image in each of two correlators i s  a composite of four 
images that are spatially separated. A transparency i s  pre- 
pared containing the four images and the Fourier transform 
of this pattern i s  formed with a lens. A hologram of the Fou- 
rier transform of the composite pattern i s  then formed by 
recording i ts  interference with a plane wave reference. The 
holograms that are formed in this manner are placed at the 
intermediate planes of two Vander Lugt correlators that are 
cascaded to form the optical memory loop. 

The schematic diagram of the overall optical architecture 
i s  shown in Fig. 4, and a photograph of the experimental 
apparatus is shown in Fig. 5. The first correlator consists of 
the liquid crystal light valve (LCLV) at fl, the beam splitter 
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Fig. 4. 

Fig. 5. 

Argon LCLV Bsg L, Input 

Schematic diagram of the optical loop. 
IAaer 

Photograph of the optical loop. 

cube BS,, the lenses L,, L,, and the hologram H,. The LCLV 
here functions as a 2-D array of neurons. It consists of a 
dielectric mirror sandwiched between a light-sensing layer 
and a light-modulation layer. The light-sensing layer i s  a 
CdS photoconductor which acts as a photosensor, whereas 
the light-modulation layer is a thin layer (a few microns) of 
nematic liquid crystal. When light strikes the photosensor, 
itsconductancechanges,which in turn changesthevoltage 
across the liquid crystal on the other side. When a reading 
light beam across the liquid crystal layer i s  reflected off the 
light-modulating side, i ts  polarization state is  modulated in 
proportion to the voltage across the liquid crystal layer. 

The second correlator consists of P,, L3, H,, L4, BS3, and 
P, shown in Fig.4.The input pattern is  imaged ontothe LCLV 
by lens L, and through beam splitter 6S3. A collimated argon 
laser beam illuminates the read-out side of the LCLV 
through beam splitters BS, and BS,. A portion of the 
reflected light from the LCLV that propagates straight 
through BSI, i s  diverted by BS,, and it i s  imaged by lens Lo 
onto a CCD television camera through which we monitor 
the system. The portion of light reflected by BS, into the 
loop is  Fourier transformed by lens L, and illuminates ho- 
logram HI. The correlation between the input image and 
each of the stored images i s  produced at plane P2. The spac- 
ing of the pinhole array at P2 corresponds to the spatial sep- 
aration between the stored images. The remainder of the 
optical system from P2 back to the neural plane P1 i s  essen- 
tially a replica of the first half, with hologram H2 storing the 
same set of images as H,. 

The holograms in this system are thermoplastic plates, 
with an area of 1 in2 and 800 linedmm resolution. The ho- 
logram H1 i s  made with a high-pass characteristic for edge 
enhancement to improve discrimination. H, on the other 
hand is  broadband so that the feedback images have high 
fidelity with respect to the originals. We use a diffuser to 

. 

(b) ( C )  

Fig. 6. Stored images. (a) The original images. (b) Images 
reconstructed from H,.  (c) Images reconstructed from H,. 

achieve this when making HZ. Fig. 6(a) shows the four orig- 
inal images. Fig. 6(b) shows the images reconstructed from 
the first hologram H1, and Fig. 6(c) shows the images recon- 
structed from the second hologram H,. 

The pinhole array at P, samples the correlation signal 
between the image coming from the LCLV and the images 
stored in hologram H,. The pinhole diameter used in these 
experiments ranges from 45 pn to 700 pm. If the pinholes 
are too small, the light passing through to reconstruct the 
feedback image is too weak to be detected by the LCLV. On 
the other hand, large pinholes introduce excessive blurring 
and cross-talk and make the reconstructed images un- 
recognizable. The pinhole size also affects the shift in- 
variance of the loop. In order to be recognized, the auto- 
correlation peak from an external image should stay within 
the pinhole. Larger pinholes allow more shift in the input 
image. The system performance under different selections 
of pinhole diameters is  discussed in the next section. As the 
optical signal goes through the loop, it i s  attenuated because 
of the small diffraction efficiency of the Fourier transform 
holograms and the losses from pinholes, lenses, and beam 
splitters. To compensate for this loss, we use an image 
intensifier at the photoconductor side of the LCLV. The 
microchannel plate of the image intensifier is sensitive to 
a minimum incident intensity of approximately 1 nW/cm2 
and reproduces the input with an intensity IO4 times 
brighter (IO pW/cm2), sufficient to drive the LCLV. If we use 
a beam with intensity equal to 10 mW/cm2 to read the LCLV, 
then the intensityof theoutput light i s  approximately1 mW/ 
cm2. Thus, the combination of the image intensifier and the 
LCLV provides an optical gain up to IO6. It turns out that the 
setting of the gain is  the key parameter that mediates the 
trade-off between distortion invariance and the discrimi- 
nation capability of the loop. This will also be discussed in 
the next section. 

IV. EXPERIMENTAL RESULTS 

The optical associative loop of Fig. 4 can be lumped into 
the simplified blocks shown in Fig. 7(a). The LCLV i s  rep- 
resented as the component Gain in Fig. 7(a). The other parts 
of the loop are all lossy, linear components and are rep- 
resented by the component Loss in Fig. 7(a). 
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(b) 
Fig. 7. (a) The gain and loss components of the loop. (b) The 
stable states of the loop. 

The dynamics of the recall process can be understood by 
using the iteration map shown in Fig. 7(b). In the figure the 
gain curve represents the input-output response of the 
neurons, whereas the straight line gives the loop loss  due 
to the holograms, and pinholes, etc. The intersection point 
Q1 i s  the threshold level, and the intersection point Q2 gives 
a stable point. If the initial condition is above the threshold 
level e,, the signal (I,) grows in successive iterations until 
it arrives and latches at Q2. On the other hand, if the initial 
condition i s  belowo,, thesignal (/,)decaystozero.The num- 
ber of iterations (convergence time) depends on the initial 
condition.Thisof course isonlya simplified pictureof what 
goes on in the loop. A more precise analysis will be given 
in Section V. 

The loopdynamicswere measured by controllingthetwo 
shutters shown in Fig. 7(a). An example of the temporal 
response of the loop to an input pattern i s  shown in Fig. 8. 
The lower trace represents the intensity of the external input 
image and the upper trace represents the corresponding 
light intensity detected at the loop output. Before time tl ,  
both shutters are closed and the response i s  low. At time 
tl the input shutter i s  opened (with the loop shutter s t i l l  
closed) and the lower trace becomes high. The upper trace 
shows the corresponding response of the neurons to the 
external input. At time f2 the loop shutter i s  opened and the 
loop is  closed. The feedback signal arrives at the neurons 
as an additional input and iteration begins. It takes about 
two seconds in this case for the loop to reach a stable state. 
At time t3  the input shutter i s  closed and the lower trace 
becomes low. However, the loop remains latched to a sta- 
ble state, which i s  one of the stored images. We get similar 
resultswith reduced input intensity. It takes longer to reach 
a stable state when the input i s  weak, but the final state 
remains the same. 

Since the external input does not affect the shape of the 
final state, but only selects which state i s  produced, there 
i s  a certain degree of invariance in the system since a dis- 
torted version of a stored image can recall the stored image. 
The effect of distortions such as scale, rotation and shift, 

t 
t 3  

t t  

Fig. 8. Temporal response of the loop. (a) Strong input. (b) 
Weak input. Timing: t ,  = Input ON, f L  = Feedback ON, t 3  
= Input OFF. 

is todecrease the initial intensity level of the loop. However, 
as long as the initial condition is above the threshold (6' in 
Fig. 7(b)), the loop still converges to a memory state. The 
strength of the initial condition is determined bythedegree 
of distortion of the input,whilethe threshold isdetermined 
by the neural gain and loop loss. 

The images stored in the loop are the four faces shown 
in Fig. 6(a). Fig. 9(a) shows the response of the system when 
a partially blocked face i s  presented to the system with the 
loop shutter closed. This sets the initial condition. The loop 
shutter i s  then opened to close the feedback path, and the 
stateof the system evolves.After some time the loop reaches 
stable state and a complete face appears. The time for this 
process ranges from less than one second to several sec- 
onds, depending on the initial condition and the system 
parameters. The complete image remains latched in the 
loop when the external input is removed. Fig. 9(b) shows 
the system output at the moment the loop shutter is closed. 
We see that the feedback image i s  superimposed on the 
input. Fig. 9(c) to (e) shows the evolution of the output after 
the feedback loop i s  closed. The complete image obtained 
2 seconds after the loop is closed i s  shown in Fig. 9(e). Fig. 
9(f) shows that after the external input is removed, the 
recalled image stays latched. The same situation occurs 
when other partially blocked faces are used. 

In a separate experiment, a rotated version of each of the 
faces was used as input. Fig. 10(a) shows the output of the 
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(e) 
Fig. 9. Retrieval of the complete image from the partial 
input. (a) The partial input at t = 0. (b) t = 0' (loop closed). 
(c) t = 400 ms. (d) t = 800 ms. (e) t = 2 sec. ( f )  Input OFF. 

(e) (f ) 

Fig. 10. Retrieval of the complete image from the rotated 
input. (a) The input at t = 0. (b) t = O +  (loop closed). (c) t = 
1.8 sec. (d) t = 3.6 sec. (e) t = 4.8 sec. ( f )  Input OFF. 

system when a rotated version (by 6") of one of the faces 
i s  presented to the system with the loop shutter closed. Fig. 
10(b) shows the memory output immediately after the feed- 
back loop is  closed. The evolution of the system towards 
the original unrotated image i s  shown in Fig. 1O(c) to Fig. 
10(e). 

In Fig. 1l(a) the upper curve is the intensity of the final 
image and the lower curve i s  the convergence time, both 
plotted as functions of rotation angle. The larger the rota- 
tion angle, the longer it takes to converge. However, once 
the loop reaches stable state, the output intensity i s  always 
the same regardless of the initial rotation. The output inten- 
sitydropstozerowhen theangle i s  morethan8O.This means 
that the initial condition is  below threshold and the rotated 
image does not elicit a response. One way to increase tol- 
erance to rotation i s  by increasing the neural gain SO that 
it can detect weaker feedback signals. It i s  found that with 
the gain set 10 times higher, the tolerance increases to 16". 

loo lbo goo dw 
mft (4 

(b) 
Fig. 11. (a) Loop response to rotated inputs. (b) Loop 
response to shifted inputs. (Optical gain = lo4; 0: Output 
intensity. U: Loop rise time.) 

However, although we can obtain more tolerance by 
increasing the gain, this enhances crosstalk and may cause 
the loop to converge to the wrong image. Similar experi- 
ments were carried out to measure the ability of the system 
to tolerate scale changes. The results were similar, with tol- 
erance in the range of 7% to 9%, depending on the gain. 

This system has very small tolerance to position errors at 
the input, i.e., it i s  not shift invariant. When the input image 
is translated, the entire correlation pattern in the inter- 
mediate plane P2 shifts also. The autocorrelation peak that 
is normally aligned with the pinhole i s  blocked. A small 
degree of shift invariance exists due to the finite width of 
the pinhole and the correlation peak. In the experimental 
system, the pinhole diameter was 90 pm. Fig. I l ( b )  shows 
the strength of the final state and the rise time versus the 
amount of shift in the input from i t s  nominal position. A 
larger pinhole yields more shift invariance. But as the pin- 
hole diameter increases, the reconstruction from the sec- 
ond hologram i s  blurred because the output becomes the 
convolution of the stored image with i ts  autocorrelation 
pattern. This results in a loss in correlation strength in sub- 
sequent iterations, and can result in insufficient gain for 
maintaining a stable state. 

The experimental results shown above demonstrate the 
distortion-invariance capability of the associative loop. By 
raising the neural gain sufficiently high, the loopcan always 
be made to produce an image as a stable state no matter 
how much wedistort the input image. But the ability to reli- 
ably produce correct associations between initial and final 
states degrades as the gain increases. If there is  too much 
gain, then just shining a flashlight at the input of the system 
can cause it to converge to one of i ts  stable states. I f  the gain 
i s  set too low, the slightest distortion of the stored images 
renders it unrecognizable. If the gain i s  set even lower, no 
input can cause the loop to latch on a stable state. Fig. 12 
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Fig. 12. Loopdynamics with high optical gain. (a)The input 
at t = 0. (b) t = O +  (loop closed). (c) t = 1.2 sec. (d) t = 1.8 
sec. (e) The input i s  OFF. ( f )  Stable state. 

shows an example of the behavior obtained when the gain 
is set too high. An unfamiliar input initially produces an 
unrecognizable state. When the external input i s  removed, 
the system latches erroneously to one of the stored images. 

v. A NETWORK MODEL FOR THE OPTICAL LOOP 

The optical associative memory presented in this paper 
i s  very similar to a Hopfield network, but it is not quite the 
same. The neurons are simulated by the LCLV, which 
responds to light intensity, which i s  the magnitude squared 
of the light amplitude, the quantitythat is modulated bythe 
output stage of the LCLV and multiplied by the weights. 
Consequently, the input signal to the neurons is first 
squared before beingthresholded and as a result the neural 
gain i s  unipolar instead of bipolar(as in the Hopfield model). 
The interconnection weights are bipolar quantities (actually 
they can be complex since they are holographic gratings), 
As mentioned before, the first correlator contains a high 
pass version of the stored memories. In our analysiswe will 
assume that the high pass filtering operation subtracts the 
mean value of each image, thus transforming the unipolar 
initial images into their bipolarversions. Since in theoptical 
system the outer product needed to specify the intercon- 
nection matrix i s  formed as acascadeof two correlators, the 
resulting weight i s  the outer product between bipolar and 
unipolar versions of the stored images. These differences 
give us characteristics that are distinct from the Hopfield 
model, such as a ground state (which the Hopfield model 
does not have) and a dependence of the stable states on the 
gain the system (in the optical system an increase in gain 
transforms the shape of the stable states). Thus although 
the Hopfield model has been analyzed extensively, all the 
results can not be applied directly to our system, and fur- 
ther analysis i s  necessary. 

In the following, we present a model for the optical asso- 
ciative-memory loop described above. For simplicitywe will 
revert in the subsequent analysis to I-D, discrete notation. 
Let xy  denote the i-th bit of the mth unipolar (0 or 1) mem- 
ory. The interconnection matrix that i s  implemented by the 

optics i s  
M 

wij = C (xy - a,,,)xy, (7) 
m = l  

where a,,, = 1 / N  CYz1x,"' i s  the mean value of the mth mem- 
ory.Aneuron isoptically simulated byone pixelof theLCLV, 
which i s  modeled as shown in Fig. 13. Let xi denote the out- 

output 

.... 
/ 

/ 
/ 

Input 

---. 
\ 
\ 

Y 
I *+, I \ I 

\ / 

Optical Neuron 

Fig. 13. Model for the LCLV and the gain function. 

put of the i t h  neuron (or equivalently the reflectivity of a 
pixel on the LCLV). Then 

where g i s  a nonlinear function describing the neuron 
response. Note that g is an even function instead of an odd 
(sigmoid-like) function, as is usually assumed. 

In the above equation the response of each pixel i s  cou- 
pled to all other pixels and depends on all the memories 
stored in wq. To gain some understanding about what the 
stable states are and how they are related to the patterns 
we attempt to store in the system, we introduce a change 
of variables. 

,!?'are linearly 
independent. We decompose the vector space RN into two 
subspaces, V, and V,, where V, i s  the vector space spanned 
by the stored images and V, is normal to V,. We define a 
basis p1 = { y ' ,  y z ,  

Assumethat the stored imagesxl,xZ, * 

. . , y M }  for V,, such that 

yi x i  = 6, i , j  = 1, . . .  , M (9) 

and we select an orthonormal basis p2 = { y M + l ,  * , y"} 
for V,. We then have p = , y N }  which 
forms a basis for R". 

Consider the vector U whose j t h  component i s  (xI - I/ 
NC;=,xk).  (We will call U the bipolar version of x.) Let cI be 
the I th component of U expanded in terms of the basis 0. 
Using (g) ,  a set of differential equations can be found for 

U p2 = { y ' ,  

the cis: 
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M In this case, the driving forces can be written as 
3 = -cf + 
d t  ,=1 m - 1  N 

($ - bf)g ( c c,,,~:), 

hl(c,, c2) = (xl - al)g(c,x) - a1 ,go g(c2x?) (17) I = M + 1, . * .  , N (11) x ; # o  

where 

(12) 

We also have 
N M c w,,x, = c cmxy. (1 3) 

\ = 1  m = l  

In general, when the state of the system approaches the 
I th  stored pattern, the variable cf becomes large. In partic- 
ular, if the stored memories xm were orthogonal (no over- 
lapping) then c’would simply be the inner product between 
the bipolar version U of the state of the system and the I th  
stored memory. The I t h  equation of ( I O )  has a driving force 
which i s  the inner product between the bipolar version of 
the I th  memory and the output of the neurons. If the state 
of the system starts to approach one of the stored memories 
then the corresponding c’will tend to grow thus providing 
the system with a tendency to be attracted to that state. Set- 
ting d l d t  = 0 in (9) and using (IO), we get the following 
expression for the equilibrium states of the system: 

x, = g ( m = l  ; GX?). 

If one of the c,’s becomes dominant, then the stable state 
of the system resembles the corresponding stored pattern. 
Note, however, that the neurons will also pick up some 
cross-correlation components. This i s  a property observed 
in our experiments where increase of the gain led to the 
distortion of the stable states and eventually to the creation 
of unrecognizable mixture states. 

driving terms of the equations for cM + . * * , cN (11) depend 
only on c1, . . . , cM. Thus once the steady states of cl, 
. . .  , cM are known, so will those of cM + I ,  . . . , cN. Therefore 
we need only consider the I coupled equations in (IO). 

To gain some insight of how the system behaves, we 
introduce a geometrical method to illustrate how the sys- 
tem evolves to a stable state, and how it i s  influenced by 
the parameters such as gain and initial conditions. In order 
to illustrate the concept, we will consider the case where 
only two images, x1 and x2, are stored in the memory. As 
we shall see, the two-image case contains all the salient fea- 
tures of the dynamics. Similar arguments can be made to 
extend the results to the general case of multiple stored 
images. 

, Note that c1, . . . , c,areroupled together in ( IO) ,  but the 

J 

. 

Equation ( I O )  i s  reduced to two equations: 

Recall thata,anda2aretheaverage levelsofthe input images 
x1 andx’. Let hl(c,, c2) represent the driving term in (15), and 
hp(cl, c,) the summation term in (16). For simplicity, assume 
that x1 and x z  have no overlapping nonzero components. 
Thus x: can be nonzero only when xf  = 0, and vice versa. 

Therearetwo parts in eachofthedrivingforces.Consider 
h,(cl, c2). The first term comes from the correlation between 
the neuron state g(c,x’) and the bipolar version of stored 
image xl, and the second term results from the coupling 
between c1 and c 2  through the dc level a,. Since a, and the 
gain function g(x) are always positive, the second term gives 
a negativecontribution tothedrivingforce.This means that 
the coupling pulls the system away from xl. The same 
description also applies to c2. We plot hl(cl, c,) against c1 
for c,  = 0 and c2 # 0 in Fig. 14(a). 

(a) 

I IC‘ n 

(b) 
Fig. 14. The driving force and the dynamics of the loop. (a) 
The driving force for the first stored image. (b) The boundary 
lines of the equilibrium states of the f i rst  image. 

In the figure, the solid curve represents the case c2 = 0, 
and the dashed curve represents the case for c2  # 0. We 
also plot the line h(c,) = c1 in the same figure. It i s  seen that 
there are three intersections, P,  Q, and R ,  between the 
straight line and the solid curve hl(cl, c2) (for c2 = 0).  As we 
increase the value of c,from 0 to a positive or negative value, 
the curve h,(cl, c2)  changes due to the second summation 
term in (I@, as shown in Fig. 14(a). The intersection points 
P,  Q, and R then also change. As c2 increases, the points Q, 
and R will typically merge together and then vanish. If we 
plot out the values of c1 corresponding to P, Q, and R for 
different c2 values in the (c,, c2) plane, they will trace out 
three curves. An example i s  shown in Fig. 14(b) (here the 
curves by Q, and R merge to become a closed loop). We will 
call these the boundary lines (of c,). 

Consider the three intersection points for a particular c2 
as shown in Fig. 14(a). The c, axis i s  divided into four regions, 
designated as 1 to 4. In regions 1 and 3, c, i s  smaller than 
h,(cl, c,) and dc,ldt > 0. Thus, in these regions the system 
state evolves in the direction of increasing c,. This is  rep- 

HSU et al.: HOLOGRAPHIC IMPLEMENTATION OF A FULLY CONNECTED NEURAL NETWORK 1643 

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on August 27, 2009 at 11:24 from IEEE Xplore.  Restrictions apply. 



resented by the arrows pointing to the right in the figure. 
On the other hand, in regions 2 and 4, dclldt c 0; thus, the 
system evolves toward decreasing c1. The corresponding 
situation i s  shown in the (cl, c2) plane in Fig. 14(b). Here the 
regions 2 and 4 merge. The arrows again denote the direc- 
tion that c1 changes. 

Bygoingthrough thesame procedure,wecanobtain sim- 
ilar boundary lines for c2. We then plot the two groups of 
boundary lines in the same (cl, c2) plane to obtain the phase 
diagram for (15) and (16). An example i s  shown in Fig. 15. 

I t" 

Fig. 15. Phase flow of the two-image auto-associative rnern- 
ory. States 0,1,2 are stable. States 3,4,5 are unstable (saddle 
points). State 6: Source state. (unstable) 

We see that there are 7equilibrium points; one source, three 
sinks, and three saddles. The three sinks represent the null 
state (no image) and the two stored images. Point 1 rep- 
resents the stable state corresponding to stored image x', 
since at that position c1 is large and c2 i s  small. On the other 
hand, at point 2 c1 i s  small and c2 i s  large, and this represents 
the stable state corresponding to stored image x2. It can be 
seen from the figure that if we start from an initial state that 
i s  close to one of the stored states, the system will converge 
to that state. Otherwise, it will decay to zero. 

From the phase diagram we see that the stable state i s  
always a mixture state of the stored memories. The extent 
of mixture can be reduced by reducing the neural gain. 
However, if the gain i s  too small, then the system will not 
be able to sustain the stored memories. To see why this i s  
so, consider the three intersection points in Fig. 14(a). 
Reducing the gain shrinks the hl(cl, c2) curve, so that the 
points Q, and R merge at a lower value of c2 in Fig. 14(b). 
If we lower the gain further, the intersection points Q, and 
R will disappear altogether, and there will be only one 
boundary line in Fig. 14(b). Thus in Fig. 15, as the gain 
decreases, the intersection points 4 and 6 will first disap- 
pear as the two closed loops (boundary lines) shrink. As the 
gain decreases further, the loops disappear, and with it the 
intersection points 1,2, 3, and 5. In this case, there will be 
only one equilibrium state, viz., the null state at the origin. 
No matter where the initial state is, the system always decays 
to zero. 

On the other hand, suppose the neural gain is set very 
high. In this case the loops in Fig. 15will become larger, and 
two more equilibria points can appear, as shown in Fig. 16. 

Fig. 16. The dynamics of the loop at high gain. Two new 
equilibrium states are generated: M is a mixture state and 
s is a saddle point. 

some slight overlap. In principle we can s t i l l  plot out cor- 
responding boundary lines for this case. The shape and 
position of these lines will be altered somewhat from the 
nonoverlapping case. However, since the neural gain func- 
tion is continuous the general features of the system will 
be the same if the overlap i s  small. As the overlap between 
the stored states increases, the boundary lines in the phase 
diagram become distorted. In computer simulations, the 
stable points that ought to resemble the vectors we attempt 
to store in the memory, become a mixture of all the stored 
states and the system performance degrades. We do not yet 
have a prediction for the amount of overlap that i s  tolerated 
in this system. 

It i s  interesting to use the method described above to 
investigate the effect of using an all-pass hologram instead 
of a high-pass hologram in the first correlator of our system. 
Note that in this case, the interconnection matrix w,,will be 
symmetric. We expand herex instead of U ,  and consider the 
components cI of x expanded in basis 0. Equations (15) and 
(16) then become 

d C l  

dt r=l 

N 

- = -c1 + ,z x:g(clx; + c2x3 

dt 

(19) 

(20) 

By going through similar arguments, we can draw the 
boundary lines and the phase diagram for this system. Fig. 
17 shows one example. It is  seen that there are four stable 
states: two memory states, 1 and 2, one null state 0, and one 
mixture state m. If we decrease the neural gain, then the 
points 1,2, sl, and s2, may disappear. However, the mixture 
statem always exists. This shows why a high-pass hologram 

The state m is a strongly mixed state of x' and xz,  We-also 

tant that the gain is not set too high. 

I 

see that m has a large region of attraction. Thus it is impor- 17. Thedynamicsof the loop without the high pass ho- 
logram. There are four stable states: 1 and 2 are the stored 
states. 0 is the null state. m is a mixture state. The other states 

Next consider the case where the stored memories have are unstable. 
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is crucial fo r  good per formance of the  memory  loop, a fact 
conf i rmed b y  the  experimental system. 
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