42,038 research outputs found
Numerical studies of interacting vortices
To get a basic understanding of the physics of flowfields modeled by vortex filaments with finite vortical cores, systematic numerical studies of the interactions of two dimensional vortices and pairs of coaxial axisymmetric circular vortex rings were made. Finite difference solutions of the unsteady incompressible Navier-Stokes equations were carried out using vorticity and stream function as primary variables. Special emphasis was placed on the formulation of appropriate boundary conditions necessary for the calculations in a finite computational domain. Numerical results illustrate the interaction of vortex filaments, demonstrate when and how they merge with each other, and establish the region of validity for an asymptotic analysis
Cross-linked polyvinyl alcohol and method of making same
A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries
Nonconservative higher-order hydrodynamic modulation instability
The modulation instability (MI) is a universal mechanism that is responsible
for the disintegration of weakly nonlinear narrow-banded wave fields and the
emergence of localized extreme events in dispersive media. The instability
dynamics is naturally triggered, when unstable energy side-bands located around
the main energy peak are excited and then follow an exponential growth law. As
a consequence of four wave mixing effect, these primary side-bands generate an
infinite number of additional side-bands, forming a triangular side-band
cascade. After saturation, it is expected that the system experiences a return
to initial conditions followed by a spectral recurrence dynamics. Much complex
nonlinear wave field motion is expected, when the secondary or successive
side-band pair that are created are also located in the finite instability gain
range around the main carrier frequency peak. This latter process is referred
to as higher-order MI. We report a numerical and experimental study that
confirm observation of higher-order MI dynamics in water waves. Furthermore, we
show that the presence of weak dissipation may counter-intuitively enhance wave
focusing in the second recurrent cycle of wave amplification. The
interdisciplinary weakly nonlinear approach in addressing the evolution of
unstable nonlinear waves dynamics may find significant resonance in other
nonlinear dispersive media in physics, such as optics, solids, superfluids and
plasma
New urea-absorbing polymers for artificial kidney machines
Etherified polymer is made from modified cellulose derivative which is reacted with periodate. It will absorb 2 grams of urea per 100 grams of polymer. Indications are that polymers could be used to help remove uremic wastes in artificial kidneys, or they could be administered orally as therapy for uremia
Theory of wing rock
A theory is developed for predicting wing rock characteristics. From available data, it can be concluded that wing rock is triggered by flow asymmetries, developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. A new nonlinear aerodynamic model that includes all essential aerodynamic nonlinearities is developed. The Beecham-Titchener method is applied to obtain approximate analytic solutions for the amplitude and frequency of the limit cycle based on the three degree-of-freedom equations of motion. An iterative scheme is developed to calculate the average aerodynamic derivatives and dynamic characteristics at limit cycle conditions. Good agreement between theoretical and experimental results is obtained
Expression of Green Fluorescence Protein (GFP) in Zebrafish Muscle through Injection: A Gene Therapy Model
Expression of the target gene is important for gene therapy. Presently, localized transgenesis is used for gene therapy which can be achieved by a target gene expression. Here, we have reported the plasmid mediated gene therapy to zebrafish model. For this purpose, we have chosen green fluorescent protein (GFP) as a target gene because the expression can be detected easily. GFP was inserted in a plasmid vector, pQE30 to develop the vector pQE30GFP. The plasmid pQE30GFP was constructed form plasmid, pQE30 and pEGFPC2. pQE30GFP injected directly in one group of fish into the muscle where luciferase expression was noted. In another group, after injection electroporation was performed where we have also noted luciferase expression; but, electroporation cause muscle injury to the zebrafish. In our case, the expression was very strong at the site of injection in first group in compare to electroporation group and in both the cases expression was stable more than two weeks
High Input Impedance Voltage-Mode Universal Biquadratic Filters With Three Inputs Using Three CCs and Grounding Capacitors
Two current conveyors (CCs) based high input impedance voltage-mode universal biquadratic filters each with three input terminals and one output terminal are presented. The first circuit is composed of three differential voltage current conveyors (DVCCs), two grounded capacitors and four resistors. The second circuit is composed of two DVCCs, one differential difference current conveyor (DDCC), two grounded capacitors and four grounded resistors. The proposed circuits can realize all the standard filter functions, namely, lowpass, bandpass, highpass, notch and allpass filters by the selections of different input voltage terminals. The proposed circuits offer the features of high input impedance, using only grounded capacitors and low active and passive sensitivities. Moreover, the x ports of the DVCCs (or DDCC) in the proposed circuits are connected directly to resistors. This design offers the feature of a direct incorporation of the parasitic resistance at the x terminal of the DVCC (DDCC), Rx, as a part of the main resistance
- …
