602 research outputs found

    Frictional analysis of cam-controlled planetary gear trains

    Get PDF
    This study aims to carry out the frictional analysis of cam-controlled planetary gear trains through an illustrative example. First, the equations for frictional analysis proposed in the previous study are presented. Then, the results of friction force and couples are obtained by numerical analysis. The results indicate that a cam-controlled planetary gear train is of high mechanical efficiency, but will induce significant vibration

    SPEECH ENHANCEMENT BASED ON SPARSE THEORY UNDER NOISY ENVIRONMENT

    Get PDF
    [[abstract]]Recently, the sparse algorithm for sparse enhancement is more and more popular issues. In this paper, we classify the process of the sparse theory to enhance speech signal into two parts, one is for dictionary training part and the other is signal reconstruction part. We focus on the White Gaussian Noise. Clean speech dictionary D is trained by K-SVD algorithm. The orthogonal matching pursuit(OMP) algorithm is used to obtain the sparse coefficients X of clean speech dictionary D. Denoising performance of the experiments shows that our proposed method is superior than other methods in SNR, LLR, SNRseg and PESQ.[[sponsorship]]National Taipei University[[conferencetype]]國際[[conferencedate]]20150718~20150719[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Tokyo, Japa

    3D FACE MODEL CONSTRUCTION BASED ON KINECT FOR FACE RECOGNITION

    Get PDF
    [[abstract]]We propose a simpler and faster method to recognize face. First, we use Kinect to detect frontal face and get depth image information with face, then we portrayed face in OpenGL to construct a three-dimensional face model based on the depth information. The face model also retains texture information of the original face images, and to create a complete change depth of face. It has a good result of repairing the distortion in side face. We can get a set face images with different angles by the method proposed, In recognition part, we use PCA(Principal Component Analysis) to reduce the dimensions, and classified with SVM(Support Vector Machine). The experiments show that the side face recognition can have good results.[[sponsorship]]National Taipei University[[conferencetype]]國際[[conferencedate]]20150718~20150719[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Tokyo, Japa

    Development of Position-Sensitive Magnetic Calorimeters for X-Ray Astronomy

    Get PDF
    Metallic magnetic calorimeters (MMC) are one of the most promising devices to provide very high energy resolution needed for future astronomical x-ray spectroscopy. MMC detectors can be built to large detector arrays having thousands of pixels. Position-sensitive magnetic (PoSM) microcalorimeters consist of multiple absorbers thermally coupled to one magnetic micro calorimeter. Each absorber element has a different thermal coupling to the MMC, resulting in a distribution of different pulse shapes and enabling position discrimination between the absorber elements. PoSMs therefore achieve the large focal plane area with fewer number of readout channels without compromising spatial sampling. Excellent performance of PoSMs was achieved by optimizing the designs of key parameters such as the thermal conductance among the absorbers, magnetic sensor, and heat sink, as well as the absorber heat capacities. Micro fab ri - cation techniques were developed to construct four-absorber PoSMs, in which each absorber consists of a two-layer composite of bismuth and gold. The energy resolution (FWHM full width at half maximum) was measured to be better than 5 eV at 6 keV x-rays for all four absorbers. Position determination was demonstrated with pulse-shape discrimination, as well as with pulse rise time. X-ray microcalorimeters are usually designed to thermalize as quickly as possible to avoid degradation in energy resolution from position dependence to the pulse shapes. Each pixel consists of an absorber and a temperature sensor, both decoupled from the cold bath through a weak thermal link. Each pixel requires a separate readout channel; for instance, with a SQUID (superconducting quantum interference device). For future astronomy missions where thousands to millions of resolution elements are required, having an individual SQUID readout channel for each pixel becomes difficult. One route to attaining these goals is a position-sensitive detector in which a large continuous or pixilated array of x-ray absorbers shares fewer numbers of temperature sensors. A means of discriminating the signals from different absorber positions, however, needs to be built into the device for each sensor. The design concept for the device is such that the shape of the temperature pulse with time depends on the location of the absorber. This inherent position sensitivity of the signal is then analyzed to determine the location of the event precisely, effectively yielding one device with many sub-pixels. With such devices, the total number of electronic channels required to read out a given number of pixels is significantly reduced. PoSMs were developed that consist of four discrete absorbers connected to a single magnetic sensor. The design concept can be extended to more than four absorbers per sensor. The thermal conductance between the sensor and each absorber is different by design and consequently, the pulse shapes are different depending upon which absorber the xrays are received, allowing position discrimination. A magnetic sensor was used in which a paramagnetic Au:Er temperature-sensitive material is located in a weak magnetic field. Deposition of energy from an x-ray photon causes an increase in temperature, which leads to a change of magnetization of the paramagnetic sensor, which is subsequently read out using a low noise dc-SQUID. The PoSM microcalorimeters are fully microfabricated: the Au:Er sensor is located above the meander, with a thin insulation gap in between. For this position-sensitive device, four electroplated absorbers are thermally linked to the sensor via heat links of different thermal conductance. One pixel is identical to that of a single-pixel design, consisting of an overhanging absorber fabricated directly on top of the sensor. It is therefore very strongly thermally coupled to it. The three other absorbers are supported directly on a silicon-nitride membrane. These absorbers are thermally coupled to the sensor via Ti (5 nm)/Au250 nm) metal links. The strength of the links is parameterized by the number of gold squares making up the link. For detector performance, experimentally different pulse-shapes were demonstrated with 6 keV x-rays, which clearly show different rise times for different absorber positions. For energy resolution measurement, the PoSM was operated at 32 mK with an applied field that was generated using a persistent current of 50 mA. Over the four pixels, energy resolution ranges from 4.4 to 4.7 eV were demonstrated

    Decay Constants of Pseudoscalar DD-mesons in Lattice QCD with Domain-Wall Fermion

    Get PDF
    We present the first study of the masses and decay constants of the pseudoscalar D D mesons in two flavors lattice QCD with domain-wall fermion. The gauge ensembles are generated on the 243×4824^3 \times 48 lattice with the extent Ns=16 N_s = 16 in the fifth dimension, and the plaquette gauge action at β=6.10 \beta = 6.10 , for three sea-quark masses with corresponding pion masses in the range 260475260-475 MeV. We compute the point-to-point quark propagators, and measure the time-correlation functions of the pseudoscalar and vector mesons. The inverse lattice spacing is determined by the Wilson flow, while the strange and the charm quark masses by the masses of the vector mesons ϕ(1020) \phi(1020) and J/ψ(3097) J/\psi(3097) respectively. Using heavy meson chiral perturbation theory (HMChPT) to extrapolate to the physical pion mass, we obtain fD=202.3(2.2)(2.6) f_D = 202.3(2.2)(2.6) MeV and fDs=258.7(1.1)(2.9) f_{D_s} = 258.7(1.1)(2.9) MeV.Comment: 15 pages, 3 figures. v2: the statistics of ensemble (A) with m_sea = 0.005 has been increased, more details on the systematic error, to appear in Phys. Lett.

    Cryogenic Detector Technology for Space Science Application

    Get PDF
    We review the current status of detector development at NASA's Goddard Space Flight Center and address future prospect for space science application. In particular, the IR detector capability and applicability to second generation SOFIA instrument will be discussed. We will examine areas such as 3-dimensional hybridization of large format bolometer arrays to readout multiplexers; advanced light coupling scheme for planar ortho-mode transducer circuitry; integration of high density readout wiring for low temperature detector arrays; and microwave multiplexers for large format superconducting detector arrays

    Broadband Via-Less Microwave Crossover Using Microstrip-CPW Transitions

    Get PDF
    The front-to-back interface between microstrip and CPW (coplanar waveguide) typically requires complex fabrication or has high radiation loss. The microwave crossover typically requires a complex fabrication step. The prior art in microstrip-CPW transition requires a physical vias connection between the microstrip and CPW line on a separate layer. The via-less version of this transition was designed empirically and does not have a close form solution. The prior art of the micro wave crossover requires either additional substrate or wire bond as an air bridge to isolate two microwave lines at the crossing junction. The disadvantages are high radiation loss, no analytical solution to the problem, lengthy simulation time, and complex fabrication procedures to generate air bridges or via. The disadvantage of the prior crossover is a complex fabrication procedure, which also affects the device reliability and yield. This microstrip-CPW transition is visualized as two microstrip-slotline transitions combined in a way that the radiation from two slotlines cancels each other out. The invention is designed based on analytical methods; thus, it significantly reduces the development time. The crossover requires no extra layer to cross two microwave signals and has low radiation loss. The invention is simple to fabricate and design. It produces low radiation loss and can be designed with low insertion loss, with some tradeoff with signal isolation. The microstrip-CPW transition is used as an interface to connect between the device and the circuit outside the package. The via-less microwave crossover is used to allow two signals to cross without using an extra layer or fabrication processing step to enable this function. This design allows the solution to be determined entirely though analytical techniques. In addition, a planar via-less microwave crossover using this technique was proposed. The experimental results show that the proposed crossover at 5 GHz has a minimum isolation of 32 dB. It also has low in-band insertion loss and return loss of 1.2 dB and 18 dB, respectively, over more than 44 percent of bandwidth at room temperature. This microstrip-CPW transition requires the microstrip line to be split into two sections. Each section is connected to a microstrip quarter-wavelength openended stub. A slotline is also placed perpendicular to the microstrip section. The slot is connected to a grounded-end quarter-wavelength slotline and generates a microstrip-slotline transition. When two of these sections are placed in parallel and with the microstrip section combined at transition, a microstrip- CPW transition is formed. The slotline radiation is suppressed as two slots are excited with the electric field in an opposite direction, which cancels the radiation in far field. The invention on the crossover consists of the invented microstrip-CPW transitions combined back-to-back and a microstrip low-pass filter. One signal is crossed through to the microstrip layer, while the other signal is crossed through the CPW line located on the ground plane of the microstrip line. The microstrip low-pass filter produces a narrow line at the crossing point to enhance the system isolation. It also produces broadband response in the operating frequency band. The microstrip-CPW transition allows a microwave signal to travel from microstrip line to CPW line with low radiation loss. The crossover allows two microwave signals to cross with minimal parasitic coupling
    corecore