7,516 research outputs found

    Anisotropic Relaxation Functions and Strength of Oriented Solids Technical Report No. 106

    Get PDF
    Anisotropic relaxation functions and strength of oriented solid

    Energy absorption by polymer crazing

    Get PDF
    During the past thirty years, a tremendous amount of research was done on the development of crazing in polymers. The phenomenon of crazing was recognized as an unusual deformation behavior associated with a process of molecular orientation in a solid to resist failure. The craze absorbs a fairly large amount of energy during the crazing process. When a craze does occur the surrounding bulk material is usually stretched to several hundred percent of its original dimension and creates a new phase. The total energy absorbed by a craze during the crazing process in creep was calculated analytically with the help of some experimental measurements. A comparison of the energy absorption by the new phase and that by the original bulk uncrazed medium is made

    Kinetic considerations of the strength of oriented solids

    Get PDF
    Kinetics of mechanical strength of oriented and stressed solids based on statistical absolute reaction rate theor

    On Internal Fracture of Solids

    Get PDF
    Initiation and propagation of internal fracture in solid

    Quantitation of buried contamination by use of solvents

    Get PDF
    Experiments directed at determining the potential of reclaimed silicone polymers for reuse are described

    Quantitation of buried contamination by use of solvents

    Get PDF
    Spore recovery form cured silicone potting compounds using amine solvents to degrade the cured polymers was investigated. A complete list of solvents and a description of the effect of each on two different silicone polymers is provided

    Accretion and photodesorption of CO ice as a function of the incident angle of deposition

    Get PDF
    Non-thermal desorption of inter- and circum-stellar ice mantles on dust grains, in particular ultraviolet photon-induced desorption, has gained importance in recent years. These processes may account for the observed gas phase abundances of molecules like CO toward cold interstellar clouds. Ice mantle growth results from gas molecules impinging on the dust from all directions and incidence angles. Nevertheless, the effect of the incident angle for deposition on ice photo-desorption rate has not been studied. This work explores the impact on the accretion and photodesorption rates of the incidence angle of CO gas molecules with the cold surface during deposition of a CO ice layer. Infrared spectroscopy monitored CO ice upon deposition at different angles, ultraviolet-irradiation, and subsequent warm-up. Vacuum-ultraviolet spectroscopy and a Ni-mesh measured the emission of the ultraviolet lamp. Molecules ejected from the ice to the gas during irradiation or warm-up were characterized by a quadrupole mass spectrometer. The photodesorption rate of CO ice deposited at 11 K and different incident angles was rather stable between 0 and 45∘^{\circ}. A maximum in the CO photodesorption rate appeared around 70∘^{\circ}-incidence deposition angle. The same deposition angle leads to the maximum surface area of water ice. Although this study of the surface area could not be performed for CO ice, the similar angle dependence in the photodesorption and the ice surface area suggests that they are closely related. Further evidence for a dependence of CO ice morphology on deposition angle is provided by thermal desorption of CO ice experiments

    Violating conformal invariance: Two-dimensional clusters grafted to wedges, cones, and branch points of Riemann surfaces

    Get PDF
    We present simulations of 2-d site animals on square and triangular lattices in non-trivial geomeLattice animals are one of the few critical models in statistical mechanics violating conformal invariance. We present here simulations of 2-d site animals on square and triangular lattices in non-trivial geometries. The simulations are done with the newly developed PERM algorithm which gives very precise estimates of the partition sum, yielding precise values for the entropic exponent θ\theta (ZN∼μNN−θZ_N \sim \mu^N N^{-\theta}). In particular, we studied animals grafted to the tips of wedges with a wide range of angles α\alpha, to the tips of cones (wedges with the sides glued together), and to branching points of Riemann surfaces. The latter can either have kk sheets and no boundary, generalizing in this way cones to angles α>360\alpha > 360 degrees, or can have boundaries, generalizing wedges. We find conformal invariance behavior, θ∼1/α\theta \sim 1/\alpha, only for small angles (α≪2π\alpha \ll 2\pi), while θ≈const−α/2π\theta \approx const -\alpha/2\pi for α≫2π\alpha \gg 2\pi. These scalings hold both for wedges and cones. A heuristic (non-conformal) argument for the behavior at large α\alpha is given, and comparison is made with critical percolation.Comment: 4 pages, includes 3 figure
    • …
    corecore