5,699 research outputs found

    The Origin of \lya Absorption Systems at z>1z>1---Implications from the Hubble Deep Field

    Full text link
    The Hubble Deep Field images have provided us with a unique chance to relate statistical properties of high-redshift galaxies to statistical properties of \lya absorption systems. Combining an {\em empirical} measure of the galaxy surface density versus redshift with an {\em empirical} measure of the gaseous extent of galaxies, we predict the number density of \lya absorption systems that originate in extended gaseous envelopes of galaxies versus redshift. We show that at least 50% and as much as 100% of observed \lya absorption systems of W\apg0.32 \AA can be explained by extended gaseous envelops of galaxies. Therefore, we conclude that known galaxies of known gaseous extent must produce a significant fraction and perhaps all of \lya absorption systems over a large redshift range.Comment: 12 pages, 3 figures, accepted for publication in the Astrophysical Journal, April 10, 2000 issu

    Modulus Computational Entropy

    Full text link
    The so-called {\em leakage-chain rule} is a very important tool used in many security proofs. It gives an upper bound on the entropy loss of a random variable XX in case the adversary who having already learned some random variables Z1,
,ZℓZ_{1},\ldots,Z_{\ell} correlated with XX, obtains some further information Zℓ+1Z_{\ell+1} about XX. Analogously to the information-theoretic case, one might expect that also for the \emph{computational} variants of entropy the loss depends only on the actual leakage, i.e. on Zℓ+1Z_{\ell+1}. Surprisingly, Krenn et al.\ have shown recently that for the most commonly used definitions of computational entropy this holds only if the computational quality of the entropy deteriorates exponentially in ∣(Z1,
,Zℓ)∣|(Z_{1},\ldots,Z_{\ell})|. This means that the current standard definitions of computational entropy do not allow to fully capture leakage that occurred "in the past", which severely limits the applicability of this notion. As a remedy for this problem we propose a slightly stronger definition of the computational entropy, which we call the \emph{modulus computational entropy}, and use it as a technical tool that allows us to prove a desired chain rule that depends only on the actual leakage and not on its history. Moreover, we show that the modulus computational entropy unifies other,sometimes seemingly unrelated, notions already studied in the literature in the context of information leakage and chain rules. Our results indicate that the modulus entropy is, up to now, the weakest restriction that guarantees that the chain rule for the computational entropy works. As an example of application we demonstrate a few interesting cases where our restricted definition is fulfilled and the chain rule holds.Comment: Accepted at ICTS 201

    Vacuum ultraviolet photoabsorption spectra of nitrile ices for their identification on Pluto

    Get PDF
    Icy bodies, such as Pluto, are known to harbor simple and complex molecules. The recent New Horizons flyby of Pluto has revealed a complex surface composed of bright and dark ice surfaces, indicating a rich chemistry based on nitrogen (N2), methane (CH4), and carbon monoxide (CO). Nitrile (CN) containing molecules such as acetonitrile (CH3CN), propionitrile (CH3CH2CN), butyronitrile (CH3CH2CH2CN), and isobutyronitrile ((CH3)2CHCN) are some of the nitrile molecules that are known to be synthesized by radiative processing of such simple ices. Through the provision of a spectral atlas for such compounds we propose that such nitriles may be identified from the ALICE payload on board New Horizons</i

    Abundance Profiles and Kinematics of Damped Lyman-alpha Absorbing Galaxies at z < 0.65

    Full text link
    We present a spectroscopic study of six damped Lya absorption (DLA) systems at z<0.65, based on moderate-to-high resolution spectra of the galaxies responsible for the absorbers. Combining known metallicity measurements of the absorbers with known optical properties of the absorbing galaxies, we confirm that the low metal content of the DLA population can arise naturally as a combination of gas cross-section selection and metallicity gradients commonly observed in local disk galaxies. We also study the Tully-Fisher relation of the DLA-selected galaxies and find little detectable evidence for evolution in the disk population between z=0 and z~0.5. Additional results of our analysis are as follows. (1) The DLA galaxies exhibit a range of spectral properties, from post-starburst, to normal disks, and to starburst systems, supporting the idea that DLA galaxies are drawn from the typical field population. (2) Large rotating HI disks of radius 30 h^{-1} kpc and of dynamic mass M_dyn > 10^{11} h^{-1} M_sun appear to be common at intermediate redshifts. (3) Using an ensemble of six galaxy-DLA pairs, we derive an abundance profile that is characterized by a radial gradient of -0.041 +/- 0.012 dex per kiloparsec (or equivalently a scale length of 10.6 h^{-1} kpc) from galactic center to 30 h^{-1} kpc radius. (4) Adopting known N(HI) profiles of nearby galaxies and the best-fit radial gradient, we further derive an N(HI)-weighted mean metallicity _weighted = -0.50 +/- 0.07 for the DLA population over 100 random lines of sight, consistent with _weighted = -0.64 (-0.86, +0.40) observed for z~1 DLA systems from Prochaska et al. Our analysis demonstrates that the low metal content of DLA systems does not rule out the possibility that the DLA population trace the field galaxy population.Comment: 57 pages, 17 figures, to appear in the ApJ 20 February 2005 issue; a pdf version of the paper with full-resolution figures is available at http://falcon.mit.edu/~hchen/public/tmp/dlachem.pd

    Refined nickel nucleation and plated metal adhesion induced by pulsed light-induced plating on picosecond laser-ablated silicon solar cells

    Full text link
    This study reports the impact of pulsed Ni light-induced plating (LIP), compared to the commonly used galvanostatic Ni LIP, on the initial Ni nucleation and subsequently plated busbar adhesion of Cu-plated laser-ablated p-type passivated emitter and rear Si solar cells. Initial Ni nucleate sizes decreased from 27.8 ± 9.1 to 25.4 ± 7.9 nm when the pulse-on current density during pulsed Ni LIP was increased from 50 to 178 mA cm−2, and were smaller than the 30.4 ± 9.7 nm nucleates observed with galvanostatic plating at 25 mA cm−2 after the same charge had been delivered to the surface. The density of Ni nucleation was also increased for pulsed LIP. This increased density of smaller Ni nucleates was attributed to the higher pulse-on currents inducing a larger surface potential which favoured nucleation over Volmer Weber 3D island growth of Ni. It also led to a greater density of adhesive anchor points along busbars which contributed to more adhesive plated contacts with busbar pull forces as high as 3 N mm−1 being measured when the pulse-on current density was 100 mA cm−2. However, it is shown that higher pulse-on current densities can result in unintended parasitic reactions, such as H2 evolution, and reduced busbar adhesion

    Near-infrared observations of type Ia supernovae: The best known standard candle for cosmology

    Get PDF
    We present an analysis of the Hubble diagram for 12 Type Ia supernovae (SNe Ia) observed in the near-infrared J and H bands. We select SNe exclusively from the redshift range 0.03 < z < 0.09 to reduce uncertainties coming from peculiar velocities while remaining in a cosmologically well-understood region. All of the SNe in our sample exhibit no spectral or B-band light-curve peculiarities and lie in the B-band stretch range of 0.8-1.15. Our results suggest that SNe Ia observed in the near-infrared (NIR) are the best known standard candles. We fit previously determined NIR light-curve templates to new high-precision data to derive peak magnitudes and to determine the scatter about the Hubble line. Photometry of the 12 SNe is presented in the natural system. Using a standard cosmology of (H_0, Omega_m, Lambda) = (70,0.27,0.73) we find a median J-band absolute magnitude of M_J = -18.39 with a scatter of 0.116 and a median H-band absolute magnitude of M_H = -18.36 with a scatter of 0.085. The scatter in the H band is the smallest yet measured. We search for correlations between residuals in the J- and H-band Hubble diagrams and SN properties, such as SN colour, B-band stretch and the projected distance from host-galaxy centre. The only significant correlation is between the J-band Hubble residual and the J-H pseudo-colour. We also examine how the scatter changes when fewer points in the near-infrared are used to constrain the light curve. With a single point in the H band taken anywhere from 10 days before to 15 days after B-band maximum light and a prior on the date of H-band maximum set from the date of B-band maximum, we find that we can measure distances to an accuracy of 6%. The precision of SNe Ia in the NIR provides new opportunities for precision measurements of both the expansion history of the universe and peculiar velocities of nearby galaxies.Comment: 6 pages, 2 figures. Accepted for publication in MNRA

    The Carnegie Supernova Project I: methods to estimate host-galaxy reddening of stripped-envelope supernovae

    Full text link
    We aim to improve upon contemporary methods to estimate host-galaxy reddening of stripped-envelope (SE) supernovae (SNe). To this end the Carnegie Supernova Project (CSP-I) SE SNe photometry data release, consisting of nearly three dozen objects, is used to identify a minimally reddened sub-sample for each traditionally defined spectroscopic sub-types (i.e, SNe~IIb, SNe~Ib, SNe~Ic). Inspection of the optical and near-infrared (NIR) colors and color evolution of the minimally reddened sub-samples reveals a high degree of homogeneity, particularly between 0d to +20d relative to B-band maximum. This motivated the construction of intrinsic color-curve templates, which when compared to the colors of reddened SE SNe, yields an entire suite of optical and NIR color excess measurements. Comparison of optical/optical vs. optical/NIR color excess measurements indicates the majority of the CSP-I SE SNe suffer relatively low amounts of reddening and we find evidence for different R_(V)^(host) values among different SE SN. Fitting the color excess measurements of the seven most reddened objects with the Fitzpatrick (1999) reddening law model provides robust estimates of the host visual-extinction A_(V)^(host) and R_(V)^(host). In the case of the SE SNe with relatively low amounts of reddening, a preferred value of R_(V)^(host) is adopted for each sub-type, resulting in estimates of A_(V)^(host) through Fitzpatrick (1999) reddening law model fits to the observed color excess measurements. Our analysis suggests SE SNe reside in galaxies characterized by a range of dust properties. We also find evidence SNe Ic are more likely to occur in regions characterized by larger R_(V)^(host) values compared to SNe IIb/Ib and they also tend to suffer more extinction. These findings are consistent with work in the literature suggesting SNe Ic tend to occur in regions of on-going star formation.Comment: Abstract abridged to fit allowed limit. Resubmitted to A&A, 34 pages, 19 figures, 6 tables. Constructive comments welcome

    Echelle Spectroscopy of a GRB Afterglow at z=3.969: A New Probe of the Interstellar and Intergalactic Media in the Young Universe

    Full text link
    We present an echelle spectrum of the Swift GRB 050730, obtained four hours after the burst using the MIKE spectrograph on the Magellan Clay Telescope when the afterglow was at R=17.7. The spectrum reveals a forest of absorption features superimposed on a simple power-law shaped continuum, best described as f_nu(lambda)\propto lambda^{alpha} with alpha =1.88\pm 0.01 over lambda=7000-9000 A. We identify the GRB host at z_GRB=3.96855 based on the hydrogen Lyman absorption series, narrow absorption lines due to heavy ions such as OI, CII, SiII, SII, NiII, FeII, CIV, SiIV, and NV, and fine structure transitions such as OI*, OI**, SiII*, CII*, and FeII*. Together these transitions allow us to study the the properties of the interstellar medium (ISM) in the GRB host. The principal results are as follows. (1) We estimate a neutral hydrogen column density of log N(HI)=22.15\pm 0.05 in the host. (2) The associated metal lines exhibit multiple components over a velocity range of ~80 km/s, with >90% of the neutral gas confined in 20 km/s. (3) Comparisons between different ionic transitions show that the host has little/no dust depletion and has 1/100 solar metallicity. (4) The absorbing gas has much higher density than that of intervening damped Lya absorption (DLA) systems. In addition, we report the identification of an intervening DLA system at z_DLA=3.56439 with log N(HI)=20.3\pm 0.1 and < 5% solar metallicity, a Lyman limit system at z_LLS=3.02209 with log N(HI)=19.9\pm 0.1, a strong MgII absorber at z_MgII=2.25313, and a pair of MgII absorbers at z_MgII=1.7731, 57 km/s apart. We demonstrate that rapid echelle spectroscopy of GRB afterglows helps to reveal a wealth of information in the ISM and the intergalactic medium along the sightline (abridged).Comment: 5 pages, including 2 figures; ApJ Letters in press (minor changes in response to the referee's comments

    Szeg\"o kernel asymptotics and Morse inequalities on CR manifolds

    Full text link
    We consider an abstract compact orientable Cauchy-Riemann manifold endowed with a Cauchy-Riemann complex line bundle. We assume that the manifold satisfies condition Y(q) everywhere. In this paper we obtain a scaling upper-bound for the Szeg\"o kernel on (0, q)-forms with values in the high tensor powers of the line bundle. This gives after integration weak Morse inequalities, analogues of the holomorphic Morse inequalities of Demailly. By a refined spectral analysis we obtain also strong Morse inequalities which we apply to the embedding of some convex-concave manifolds.Comment: 40 pages, the constants in Theorems 1.1-1.8 have been modified by a multiplicative constant 1/2 ; v.2 is a final updat
    • 

    corecore