65 research outputs found

    High Throughput Screening for Small Molecule Therapy for Gaucher Disease Using Patient Tissue as the Source of Mutant Glucocerebrosidase

    Get PDF
    Gaucher disease (GD), the most common lysosomal storage disorder, results from the inherited deficiency of the lysosomal enzyme glucocerebrosidase (GCase). Previously, wildtype GCase was used for high throughput screening (HTS) of large collections of compounds to identify small molecule chaperones that could be developed as new therapies for GD. However, the compounds identified from HTS usually showed reduced potency later in confirmatory cell-based assays. An alternate strategy is to perform HTS on mutant enzyme to identify different lead compounds, including those enhancing mutant enzyme activities. We developed a new screening assay using enzyme extract prepared from the spleen of a patient with Gaucher disease with genotype N370S/N370S. In tissue extracts, GCase is in a more native physiological environment, and is present with the native activator saposin C and other potential cofactors. Using this assay, we screened a library of 250,000 compounds and identified novel modulators of mutant GCase including 14 new lead inhibitors and 30 lead activators. The activities of some of the primary hits were confirmed in subsequent cell-based assays using patient-derived fibroblasts. These results suggest that primary screening assays using enzyme extracted from tissues is an alternative approach to identify high quality, physiologically relevant lead compounds for drug development

    Identification of novel Angiogenin (ANG) gene missense variants in German patients with amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease characterized by the selective death of motor neurons in the motor cortex, brain stem and spinal cord. Recently, missense variants in the angiogenin gene (ANG), an angiogenic factor expressed in ventral horn motor neurons that is up-regulated by hypoxia, have been found in ALS patients of Irish/Scottish, North American, Italian, French and Dutch descent. To investigate the role of ANG in the German population, we screened for mutations by sequencing the entire coding region of the ANG gene in a large sample of 581 German ALS cases and 616 sex- and age-matched healthy controls. We identified two heterozygous missense variants, F(−13)L and K54E, in two German sporadic ALS cases but not in controls. Both missense variants are novel and have not been previously found in ALS cases. Our results suggest that missense variants in the ANG gene play a role in ALS in the German population and provide further evidence to support the hypothesis that angiogenic factors up-regulated by hypoxia are involved in the pathophysiology of ALS

    Association of Osteocalcin and Abdominal Aortic Calcification in Older Women: The Study of Osteoporotic Fractures

    Get PDF
    Osteocalcin (OC) is produced by osteoblasts and vascular smooth muscle cells. In animal models, serum OC levels are strongly correlated with vascular calcium content, however, the association of OC with vascular calcification in humans is uncertain. The Study of Osteoporotic Fractures (SOF) enrolled community-living women, age ≥65 years. The present study included a subsample of 363 randomly selected SOF participants. Serum total OC was measured by ELISA, and abdominal aortic calcification (AAC) was evaluated on lateral lumbar radiographs. We examined the cross-sectional association between serum OC and AAC. The mean serum OC level was 24 ± 11 ng/ml and AAC was present in 188 subjects (52%). We observed no association of OC and AAC in either unadjusted or adjusted analyses. For example, each standard deviation higher OC level was associated with an odds ratio (OR) for AAC prevalence (AAC score >0) near unity (OR = 1.06; 95% CI, 0.82–1.36) in models adjusted for CVD risk factors. Further adjustment for intact parathyroid hormone, bone-specific alkaline phosphatase, 25-hydroxyvitamin D, and hip and spine bone mineral density did not materially change the results (OR = 1.22; 95% CI, 0.86–1.75). Similarly, higher OC levels were not associated with severity of AAC (P = 0.87). In conclusion, among community-living older women, serum OC is not associated with AAC. These findings suggest that serum OC levels may more closely reflect bone formation than vascular calcification in humans

    Remodeling the Proteostasis Network to Rescue Glucocerebrosidase Variants by Inhibiting ER-Associated Degradation and Enhancing ER Folding

    Get PDF
    Gaucher’s disease (GD) is characterized by loss of lysosomal glucocerebrosidase (GC) activity. Mutations in the gene encoding GC destabilize the protein’s native folding leading to ER-associated degradation (ERAD) of the misfolded enzyme. Enhancing the cellular folding capacity by remodeling the proteostasis network promotes native folding and lysosomal activity of mutated GC variants. However, proteostasis modulators reported so far, including ERAD inhibitors, trigger cellular stress and lead to induction of apoptosis. We show herein that lacidipine, an L-type Ca2+ channel blocker that also inhibits ryanodine receptors on the ER membrane, enhances folding, trafficking and lysosomal activity of the most severely destabilized GC variant achieved via ERAD inhibition in fibroblasts derived from patients with GD. Interestingly, reprogramming the proteostasis network by combining modulation of Ca2+ homeostasis and ERAD inhibition remodels the unfolded protein response and dramatically lowers apoptosis induction typically associated with ERAD inhibition

    Increased Basal Activity Is a Key Determinant in the Severity of Human Skeletal Dysplasia Caused by TRPV4 Mutations

    Get PDF
    TRPV4 is a mechanically activated Ca2+-passing channel implicated in the sensing of forces, including those acting on bones. To date, 33 mutations are known to affect human bone development to different extents. The spectrum of these skeletal dysplasias (SD) ranges from dominantly inherited mild brachylomia (BO) to neonatal lethal forms of metatropic dysplasia (MD). Complexities of the results from fluorescence and electrophysiological studies have led to questions on whether channel activity is a good predictor of disease severity. Here we report on a systematic examination of 14 TRPV4 mutant alleles covering the entire SD spectrum. Expressed in Xenopus oocyte and without any stimulation, the wild-type channel had a ∼1% open probability (Po) while those of most of the lethal MD channels approached 100%. All mutant channels had higher basal open probabilities, which limited their further increase by agonist or hypotonicity. The magnitude of this limitation revealed a clear correlation between the degree of over-activity (the molecular phenotype) and the severity of the disease over the entire spectrum (the biological phenotype). Thus, while other factors are at play, our results are consistent with the increased TRPV4 basal activity being a critical determinant of the severity of skeletal dysplasia. We discuss how the channel over-activity may lead to the “gain-of-function” phenotype and speculate that the function of wild-type TRPV4 may be secondary in normal bone development but crucial in an acute process such as fracture repair in the adult

    Involvement of EphB1 Receptors Signalling in Models of Inflammatory and Neuropathic Pain

    Get PDF
    EphB receptors tyrosine kinases and ephrinB ligands were first identified as guidance molecules involved in the establishment of topographical mapping and connectivity in the nervous system during development. Later in development and into adulthood their primary role would switch from guidance to activity-dependent modulation of synaptic efficacy. In sensory systems, they play a role in both the onset of inflammatory and neuropathic pain, and in the establishment of central sensitisation, an NMDA-mediated form of synaptic plasticity thought to underlie most forms of chronic pain. We studied wild type and EphB1 knockout mice in a range of inflammatory and neuropathic pain models to determine 1), whether EphB1 expression is necessary for the onset and/or maintenance of persistent pain, regardless of origin; 2), whether in these models cellular and molecular changes, e.g. phosphorylation of the NR2B subunit of the NMDA receptor, increased c-fos expression or microglial activation, associated with the onset of pain, are affected by the lack of functional EphB1 receptors. Differences in phenotype were examined behaviourally, anatomically, biochemically and electrophysiologically. Our results establish firstly, that functional EphB1 receptors are not essential for the development of normal nociception, thermal or mechanical sensitivity. Secondly, they demonstrate a widespread involvement of EphB1 receptors in chronic pain. NR2B phosphorylation, c-fos expression and microglial activation are all reduced in EphB1 knockout mice. This last finding is intriguing, since microglial activation is supposedly triggered directly by primary afferents, therefore it was not expected to be affected. Interestingly, in some models of long-term pain (days), mechanical and thermal hyperalgesia develop both in wild type and EphB1 knockout mice, but recovery is faster in the latter, indicating that in particular models these receptors are required for the maintenance, rather than the onset of, thermal and mechanical hypersensitivity. This potentially makes them an attractive target for analgesic strategies

    Expression of lysostaphin in milk of transgenic mice affects the growth of neonates

    No full text
    As an initial step towards enhancing mastitis resistance in dairy animals, we generated BLG-Lys transgenic mice that secrete lysostaphin, a potent antistaphylococcal protein, in their milk. In the current study, we continue our assessment of lysostaphin as a suitable antimicrobial protein for mastitis resistance and have investigated mammary gland development and function in three lines of transgenic mice. As the lines were propagated, there was a tendency for fewer BLG-Lys litters to survive to weaning (51% as compared to 90% for nontransgenic lines, p = 0.080). Nontransgenic pups fostered on dams from these three lines exhibited diminished growth rates during the first week of lactation. Rates of gain became comparable to pups on nontransgenic dams at later time points. Initial slow growth also resulted in decreased weaning weights for pups nursed by transgenic dams (15.35 +/- 0.27 g) when compared to pups delivered and nursed by nontransgenic dams (18.61 +/- 0.61 g; p< 0.001), but the effect was temporary, as similar weights were attained by adulthood. Milk yield at peak lactation was not different between BLG-Lys (0.79 +/- 0.33 g) and nontransgenic (0.91 +/- 0.38 g; p = 0.166) dams. Histological examination of the transgenic mammary glands during gestation revealed no differences when compared to control glands; however, at early lactational stages, the BLG-Lys glands exhibited less alveolar area than control glands and a delay in lobulo-alveolar maturation. The results clearly demonstrate reduced growth of neonates on BLG-Lys dams; whether the poor pup performance can be attributed to delayed mammary development or the gland development merely reflects reduced suckling stimuli from the pups remains to be determined
    corecore