61 research outputs found
Super-harmonic injection locking of nano-contact spin-torque vortex oscillators
Super-harmonic injection locking of single nano-contact (NC) spin-torque
vortex oscillators (STVOs) subject to a small microwave current has been
explored. Frequency locking was observed up to the fourth harmonic of the STVO
fundamental frequency in microwave magneto-electronic measurements. The
large frequency tunability of the STVO with respect to allowed the
device to be locked to multiple sub-harmonics of the microwave frequency
, or to the same sub-harmonic over a wide range of by tuning
the DC current. In general, analysis of the locking range, linewidth, and
amplitude showed that the locking efficiency decreased as the harmonic number
increased, as expected for harmonic synchronization of a non-linear oscillator.
Time-resolved scanning Kerr microscopy (TRSKM) revealed significant differences
in the spatial character of the magnetization dynamics of states locked to the
fundamental and harmonic frequencies, suggesting significant differences in the
core trajectories within the same device. Super-harmonic injection locking of a
NC-STVO may open up possibilities for devices such as nanoscale frequency
dividers, while differences in the core trajectory may allow mutual
synchronisation to be achieved in multi-oscillator networks by tuning the
spatial character of the dynamics within shared magnetic layers.Comment: 21 pages, 8 figure
Direct observation of magnetization dynamics generated by nano-contact spin-torque vortex oscillators
Time-resolved scanning Kerr microscopy has been used to directly image the
magnetization dynamics of nano-contact (NC) spin-torque vortex oscillators
(STVOs) when phase-locked to an injected microwave (RF) current. The Kerr
images reveal free layer magnetization dynamics that extend outside the NC
footprint, where they cannot be detected electrically, but which are crucial to
phase-lock STVOs that share common magnetic layers. For a single NC, dynamics
were observed not only when the STVO frequency was fully locked to that of the
RF current, but also for a partially locked state characterized by periodic
changes in the core trajectory at the RF frequency. For a pair of NCs, images
reveal the spatial character of dynamics that electrical measurements show to
have enhanced amplitude and reduced linewidth. Insight gained from these images
may improve understanding of the conditions required for mutual phase-locking
of multiple STVOs, and hence enhanced microwave power emission.Comment: 10 pages, 3 figure
Auto-oscillation threshold and line narrowing in MgO-based spin-torque oscillators
We present an experimental study of the power spectrum of current-driven
magnetization oscillations in MgO tunnel junctions under low bias. We find the
existence of narrow spectral lines, down to 8 MHz in width at a frequency of
10.7 GHz, for small applied fields with clear evidence of an auto-oscillation
threshold. Micromagnetics simulations indicate that the excited mode
corresponds to an edge mode of the synthetic antiferromagnet
Mechanical oscillations of magnetic strips under the influence of external field
This is the final version of the article. Available from EDP Sciences via the DOI in this record.JEMS 2012 – Joint European Magnetic SymposiaBy application of a magnetic field on an amorphous metallic strip, the orientation of magnetization of Weiss domains can be changed. When the strip changes its length, this effect is called magnetostriction. We simulate this effect using a finite element method. In particular we calculate the change of the mechanical resonance frequency of a magnetic platelet as a function of the applied field. This gives a quantitative model of the influence of the applied magnetic field on the effective Young's Modulus of the material. © 2013 Owned by the authors, published by EDP Sciences
Broadband conversion of microwaves into propagating spin waves in patterned magnetic structures
We have used time-resolved scanning Kerr microscopy and micromagnetic simulations to demonstrate that, when driven by the spatially uniform microwave field, the edges of patterned magnetic samples represent both efficient and highly tunable sources of propagating spin waves. The excitation is due to the local enhancement of the resonance frequency induced by the non-uniform dynamic demagnetizing field generated by precessing magnetization aligned with the edges. Our findings represent a crucial step forward in the design of nanoscale spin-wave sources for magnonic architectures and are also highly relevant to the understanding and interpretation of magnetization dynamics driven by spatially uniform magnetic fields in patterned magnetic samples
High energy product in Battenberg structured magnets
PublishedJournal Article© 2014 AIP Publishing LLC. Multiphase nano-structured permanent magnets show a high thermal stability of remanence and a high energy product while the amount of rare-earth elements is reduced. Non-zero temperature micromagnetic simulations show that a temperature coefficient of remanence of -0.073%/K and that an energy product greater than 400 kJ/m3 can be achieved at a temperature of 450 K in a magnet containing around 40 volume percent Fe65Co35 embedded in a hard magnetic matrix
Grain-size dependent demagnetizing factors in permanent magnets
This is the final version of the article. Available from the American Institute of Physics via the DOI in this record.The coercive field of permanent magnets decreases with increasing grain size. The grain size dependence of coercivity is explained by a size dependent demagnetizing factor. In Dy free NdFeB magnets the size dependent demagnetizing factor ranges from 0.2 for a grain size of 55 nm to 1.22 for a grain size of 8300 nm. The comparison of experimental data with micromagnetic simulations suggests that the grain size dependence of the coercive field in hard magnets is due to the non-uniform magnetostatic field in polyhedral grains.This work is based on results obtained from the future pioneering program “Development of magnetic material technology for high-efficiency motors” commissioned by the New Energy and Industrial Technology Development Organization (NEDO). We acknowledge the financial support from the Austrian Science Fund (F4112-N13)
- …