70 research outputs found

    Morphological Properties of PPNs: Mid-IR and HST Imaging Surveys

    Full text link
    We will review our mid-infrared and HST imaging surveys of the circumstellar dust shells of proto-planetary nebulae. While optical imaging indirectly probes the dust distribution via dust-scattered starlight, mid-IR imaging directly maps the distribution of warm dust grains. Both imaging surveys revealed preferencially axisymmetric nature of PPN dust shells, suggesting that axisymmetry in planetary nebulae sets in by the end of the asymptotic giant branch phase, most likely by axisymmetric superwind mass loss. Moreover, both surveys yielded two morphological classes which have one-to-one correspondence between the two surveys, indicating that the optical depth of circumstellar dust shells plays an equally important role as the inclination angle in determining the morphology of the PPN shells.Comment: 6 pages + 8 figures, to appear in the proceedings of the conference, "Post-AGB Objects (proto-planetary nebulae) as a Phase of Stellar Evolution", Torun, Poland, July 5-7, 2000, eds. R. Szczerba, R. Tylenda, and S.K. Gorny. Figures have been degraded to minimize the total file siz

    Formation of PAHs and Carbonaceous Solids in Gas-Phase Condensation Experiments

    Full text link
    Carbonaceous grains represent a major component of cosmic dust. In order to understand their formation pathways, they have been prepared in the laboratory by gas-phase condensation reactions such as laser pyrolysis and laser ablation. Our studies demonstrate that the temperature in the condensation zone determines the formation pathway of carbonaceous particles. At temperatures lower than 1700 K, the condensation by-products are mainly polycyclic aromatic hydrocarbons (PAHs), that are also the precursors or building blocks for the condensing soot grains. The low-temperature condensates contain PAH mixtures that are mainly composed of volatile 3-5 ring systems. At condensation temperatures higher than 3500 K, fullerene-like carbon grains and fullerene compounds are formed. Fullerene fragments or complete fullerenes equip the nucleating particles. Fullerenes can be identified as soluble components. Consequently, condensation products in cool and hot astrophysical environments such as cool and hot AGB stars or Wolf Rayet stars should be different and should have distinct spectral properties.Comment: 7 pages, 5 figure

    Peculiarities and variations in the optical spectrum of the post-AGB star V448Lac=IRAS22223+4327

    Full text link
    Repeated observations with high spectral resolution acquired in 1998-2008 are used to study the temporal behavior of the spectral line profiles and velocity field in the atmosphere and circumstellar envelope of the post-AGB star V448Lac. Asymmetry of the profiles of the strongest absorption lines with low-level excitation potentials less 1eV and time variations of these profiles have been detected, most prominently the profiles of the resonance lines of BaII, YII, LaII, SiII. The peculiarity of these profiles can be explained using a superposition of stellar absorption line and shell emission lines. Emission in the (0;1) 5635A Swan band of the C2 molecule has been detected in the spectrum of V448Lac for the first time. The core of the Halpha line displays radial velocity variations with an amplitude ~8 km/s. Radial velocity variations displayed by weakest metallic lines with lower amplitudes, 1-2 km/s, may be due to atmospheric pulsations. Differential line shifts, 0 -- 8 km/s, have been detected on various dates. The position of the molecular spectrum is stationary in time, indicating a constant expansion velocity of the circumstellar shell, Vexp=15.2 km/s, as derived from the C2 and NaI lines.Comment: 19 pages, 8 figures, 1 tabl

    Revealing the mid-infrared emission structure of IRAS 16594-4656 and IRAS 07027-7934

    Full text link
    TIMMI2 diffraction-limited mid-infrared images of a multipolar proto-planetary nebula IRAS 16594-4656 and a young [WC] elliptical planetary nebula IRAS 07027-7934 are presented. Their dust shells are for the first time resolved (only marginally in the case of IRAS 07027-7934) by applying the Lucy-Richardson deconvolution algorithm to the data, taken under exceptionally good seeing conditions (<0.5"). IRAS 16594-4656 exhibits a two-peaked morphology at 8.6, 11.5 and 11.7 microns which is mainly attributed to emission from PAHs. Our observations suggest that the central star is surrounded by a toroidal structure observed edge-on with a radius of 0.4" (~640 AU at an assumed distance of 1.6 kpc) with its polar axis at P.A.~80 degrees, coincident with the orientation defined by only one of the bipolar outflows identified in the HST optical images. We suggest that the material expelled from the central source is currently being collimated in this direction and that the multiple outflow formation has not been coeval. IRAS 07027-7934 shows a bright, marginally extended emission (FWHM=0.3") in the mid-infrared with a slightly elongated shape along the N-S direction, consistent with the morphology detected by HST in the near-infrared. The mid-infrared emission is interpreted as the result of the combined contribution of small, highly ionized PAHs and relatively hot dust continuum. We propose that IRAS 07027-7934 may have recently experienced a thermal pulse (likely at the end of the AGB) which has produced a radical change in the chemistry of its central star.Comment: 35 pages, 8 figures (figures 1, 2, 4 and 6 are in low resolution) accepted for publication in Ap

    The atmospheric parameters and spectral interpolator for the stars of MILES

    Full text link
    Context. Empirical libraries of stellar spectra are used for stellar classification and synthesis of stellar populations. MILES is a medium spectral-resolution library in the optical domain covering a wide range of temperatures, surface gravities and metallicities. Aims. We re-determine the atmospheric parameters of these stars in order to improve the homogeneity and accuracy. We build an interpolating function that returns a spectrum as a function of the three atmospheric parameters, and finally, we characterize the precision of the wavelength calibration and stability of the spectral resolution. Methods. We use the ULySS program with the ELODIE library as a reference and compare the results with literature compilations. Results. We obtain precisions of 60 K, 0.13 and 0.05 dex respectively for Teff, log g and [Fe/H] for the FGK stars. For the M stars, the mean errors are 38 K, 0.26 and 0.12 dex, and for the OBA 3.5%, 0.17 and 0.13 dex. We construct an interpolator that we test against the MILES stars themselves. We test it also by measuring the atmospheric parameters of the CFLIB stars with MILES as reference and find it to be more reliable than the ELODIE interpolator for the evolved hot stars, like in particular those of the blue horizontal branch.Comment: A&A accepted, 29 pages, 6 figure

    Three dimensional C-, S- and E-transforms

    Full text link
    Three dimensional continuous and discrete Fourier-like transforms, based on the three simple and four semisimple compact Lie groups of rank 3, are presented. For each simple Lie group, there are three families of special functions (CC-, SS-, and EE-functions) on which the transforms are built. Pertinent properties of the functions are described in detail, such as their orthogonality within each family, when integrated over a finite region FF of the 3-dimensional Euclidean space (continuous orthogonality), as well as when summed up over a lattice grid FMFF_M\subset F (discrete orthogonality). The positive integer MM sets up the density of the lattice containing FMF_M. The expansion of functions given either on FF or on FMF_M is the paper's main focus.Comment: 24 pages, 13 figure

    Post-AGB stars in the SMC as tracers of stellar evolution: the extreme s-process enrichment of the 21 micrometer star J004441.04-732136.4

    Full text link
    By virtue of their spectral types, favourable bolometric corrections as well as their constrained distances, post-AGB stars in external galaxies offer unprecedented tests to AGB nucleosynthesis and dredge-up predictions. We focus here on one object J004441.04-732136.4, which is the only known 21 micrometer source of the SMC. Spectral abundance results reveal J004441.04-732136.4 to be one of the most s-process enriched objects found up to date, while the photospheric C/O ratio of 1.9 +- 0.7, shows the star is only modestly C-rich. J004441.04-732136.4 also displays a low [Fe/H] = -1.34 +- 0.32, which is significantly lower than the mean metallicity of the SMC. From the SED, a luminosity of 7600 +- 200 solar luminosities is found, together with E(B-V) = 0.64 +- 0.02. According to evolutionary post-AGB tracks, the initial mass should be approximately 1.3 solar masses. The photometric variability shows a clear period of 97.6 +- 0.3 days. The detected C/O as well as the high s-process overabundances (e.g. [Y/Fe] = 2.15, [La/Fe] = 2.84) are hard to reconcile with the predictions. The chemical models also predict a high Pb abundance, which is not compatible with the detected spectrum, and a very high 12C/13C, which is not yet constrained by observations. The predictions are only marginally dependent on the evolution codes used. We show that our theoretical predictions match the s-process distribution, but fail in reproducing the detected high overabundances and predict a high Pb abundance which is not detected. Additionally, there remain serious problems in explaining the observed pulsational properties of this source.Comment: 15 pages, 18 figures, accepted for publication in A&A Main Journa

    First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP\u27s performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP\u27s successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design
    corecore