9 research outputs found

    Multiomics links global surfactant dysregulation with airflow obstruction and emphysema in COPD

    Get PDF
    RATIONALE: Pulmonary surfactant is vital for lung homeostasis as it reduces surface tension to prevent alveolar collapse and provides essential immune-regulatory and antipathogenic functions. Previous studies demonstrated dysregulation of some individual surfactant components in COPD. We investigated relationships between COPD disease measures and dysregulation of surfactant components to gain new insights into potential disease mechanisms. METHODS: Bronchoalveolar lavage proteome and lipidome were characterised in ex-smoking mild/moderate COPD subjects (n=26) and healthy ex-smoking (n=20) and never-smoking (n=16) controls using mass spectrometry. Serum surfactant protein analysis was performed. RESULTS: Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, surfactant protein (SP)-B, SP-A and SP-D concentrations were lower in COPD versus controls (log2 fold change (log2FC) -2.0, -2.2, -1.5, -0.5, -0.7 and -0.5 (adjusted p<0.02), respectively) and correlated with lung function. Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, SP-A, SP-B, SP-D, napsin A and CD44 inversely correlated with computed tomography small airways disease measures (expiratory to inspiratory mean lung density) (r= -0.56, r= -0.58, r= -0.45, r= -0.36, r= -0.44, r= -0.37, r= -0.40 and r= -0.39 (adjusted p<0.05)). Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, SP-A, SP-B, SP-D and NAPSA inversely correlated with emphysema (% low-attenuation areas): r= -0.55, r= -0.61, r= -0.48, r= -0.51, r= -0.41, r= -0.31 and r= -0.34, respectively (adjusted p<0.05). Neutrophil elastase, known to degrade SP-A and SP-D, was elevated in COPD versus controls (log2FC 0.40, adjusted p=0.0390), and inversely correlated with SP-A and SP-D. Serum SP-D was increased in COPD versus healthy ex-smoking volunteers, and predicted COPD status (area under the curve 0.85). CONCLUSIONS: Using a multiomics approach, we demonstrate, for the first time, global surfactant dysregulation in COPD that was associated with emphysema, giving new insights into potential mechanisms underlying the cause or consequence of disease

    Identification of a Novel Zn2+-binding Domain in the Autosomal Recessive Juvenile Parkinson-related E3 Ligase Parkin

    No full text
    Missense mutations in park2, encoding the parkin protein, account for approximately 50% of autosomal recessive juvenile Parkinson disease (ARJP) cases. Parkin belongs to the family of RBR (RING-between-RING) E3 ligases involved in the ubiquitin-mediated degradation and trafficking of proteins such as Pael-R and synphillin-1. The proposed architecture of parkin, based largely on sequence similarity studies, consists of N-terminal ubiquitin-like and C-terminal RBR domains. These domains are separated by a approximately 160-residue unique parkin sequence having no recognizable domain structure. We used limited proteolysis experiments on bacterially expressed and purified parkin to identify a new domain (RING0) within the unique parkin domain sequence. RING0 comprises two distinct, conserved cysteine-rich clusters between Cys(150)-Cys(169) and Cys(196)-His(215) consisting of CX(2)-(3)CX(11)CX(2)C and CX(4-6)CX(10-16)-CX(2)(H/C) motifs. The positions of the cysteine/histidine residues in this region bear similarity to parkin RING1 and RING2 domains, as well as other E3 ligase RING domains. However, in parkin a 26-residue linker region separates the motifs, which is not typical of other RING domain structures. Further, the RING0 domain includes all but one of the known ARJP mutation sites between the ubiquitin-like and RBR regions of parkin. Using electrospray ionization mass spectrometry and inductively coupled plasma-atomic emission spectrometry analysis, we determined that the RING0, RING1, IBR, and RING2 domains each bind two Zn(2+) ions, the first observation of an E3 ligase with the ability to bind eight metal ions. Removal of the zinc from parkin causes near complete unfolding of the protein, an observation that rationalizes cysteine-based ARJP mutations found throughout parkin, including RING0 (C212Y) that form cellular inclusions and/or are defective for ubiquitination likely because of poor zinc binding and misfolding. The identification of the RING0 domain in parkin provides a new overall domain structure for the protein that will be important in assessing the roles of ARJP mutations and designing experiments aimed at understanding the disease

    Multiomics links global surfactant dysregulation with airflow obstruction and emphysema in COPD

    No full text
    RationalePulmonary surfactant is vital for lung homeostasis as it reduces surface tension to prevent alveolar collapse and provides essential immune-regulatory and anti-pathogenic functions. Previous studies demonstrated dysregulation of some individual surfactant components in COPD.ObjectivesWe investigated relationships between COPD disease measures and dysregulation of surfactant components to gain new insights about potential disease mechanisms.MethodsBronchoalveolar lavage proteome and lipidome were characterised in ex-smoking mild/moderate COPD subjects (n=26) and healthy ex-smoking (n=20) and never-smoking (n=16) controls using mass spectrometry. Serum surfactant protein analysis was performed.ResultsTotal phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and surfactant protein (SP)-B, SP-A and SP-D concentrations were lower, COPD vs. controls, log2 fold change (log2FC)=-2.0, -2.2, -1.5, -0.5, -0.7, -0.5 (adj. p-value&lt;0.02), respectively, and correlated with lung function. Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and SP-A, SP-B, SP-D, NAPSA and CD44 inversely correlated with CT small airways disease measures (E/I MLD), r=-0.56, r=-0.58, r=-0.45, r=-0.36, r=-0.44, r=-0.37, r=-0.40, r=-0.39 (adj. p- value&lt;0.05). Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and SP-A, SP-B, SP-D and NAPSA inversely correlated with emphysema (%LAA): r=-0.55, r=-0.61, r=-0.48,135 r=-0.51, r=-0.41, r=-0.31, r=-0.34, respectively (adj. p-value&lt;0.05). Neutrophil elastase, known to degrade SP-A and SP-D, was elevated, COPD vs. controls, log2FC of 0.40 (adj. p-value=0.0390) and inversely correlated with SP-A and SP-D. Serum SP-D was increased in COPD vs. HV-ES, and predicted COPD status, AUC=0.85.ConclusionsUsing a multiomics approach we, for the first time, demonstrate global surfactant dysregulation in COPD which was associated with emphysema giving new insights about potential mechanisms underlying the cause or consequence of disease
    corecore