18 research outputs found

    Učinkovitost uklanjanja bakterijske flore s proizvodnih površina nakon prerade ribe

    Get PDF
    There are numerous parameters that can influence bacterial decontamination during washing of machinery and equipment in a food processing establishment. Incomplete decontamination of bacteria will increase the risk of biofilm formation and consequently increase the risk of pathogen contamination or prevalence of other undesirable microorganisms such as spoilage bacteria in the processing line. The efficiency of a typical washing protocol has been determined by testing three critical parameters and their effects on bacterial decontamination. Two surface materials (plastic and stainless steel), water temperatures (7 and 25 °C) and detergent concentrations (2 and 4 %) were used for this purpose in combination with two types of detergents. Biofilm was prepared on the surfaces with undefined bacterial flora obtained from minced cod fillets. The bacterial flora of the biofilm was characterised by cultivation and molecular analysis of 16S rRNA genes. All different combinations of washing protocols tested were able to remove more than 99.9 % of the bacteria in the biofilm and reduce the cell number from 7 to 0 or 2 log units of bacteria/cm2. The results show that it is possible to use less diluted detergents than recommended with comparable success, and it is easier to clean surface material made of stainless steel compared to polyethylene plastic.Brojni uvjeti utječu na dekontaminaciju strojeva i opreme koja se koristi u prehrambenoj industriji. Nepotpuno uklanjanje bakterija povećava rizik stvaranja biofilma i onečišćenja patogenim mikroorganizmima ili prevladavanja nepoželjnih mikroorganizama (kao npr. uzročnika kvarenja) u proizvodnoj liniji. Uspješnost tipičnog protokola pranja utvrđena je ispitivanjem triju kritičnih uvjeta i njihova utjecaja na dekontaminaciju. U tu su svrhu upotrijebljena dva tipa proizvodnih površina (plastika i čelik), dvije temperature vode za pranje (7 i 25 °C) i dvije vrste detergenata različitih koncentracija (2 i 4 %). Na proizvodnim je površinama napravljen biofilm od bakterijske flore iz mljevenih fileta bakalara, naknadno karakterizirane uzgojem i molekularnom analizom 16S rRNA gena. Različiti protokoli pranja uspješno su odstranili više od 99,9 % bakterija biofilma i smanjili broj stanica sa 7 na 0-2 logaritamske jedinice bakterija po cm2. Rezultati pokazuju da se jednako uspješno mogu primijeniti manje količine i koncentracije detergenata od preporučenih, te da je lakše očistiti proizvodne površine od čelika nego one od polietilena

    Evaluation of the production of exopolysaccharides by two strains of the thermophilic bacterium Rhodothermus marinus

    Get PDF
    AbstractThe thermophile Rhodothermus marinus produces extracellular polysaccharides (EPSs) that forms a distinct cellular capsule. Here, the first data on EPS production in strains DSM4252T and MAT493 are reported and compared. Cultures of both strains, supplemented with either glucose, sucrose, lactose or maltose showed that the EPS were produced both in the exponential and stationary growth phase and that production in the exponential phase was boosted by maltose supplementation, while stationary phase production was boosted by lactose. The latter was higher, resulting in 8.8 (DSM4252T) and 13.7mg EPS/g cell dry weight (MAT493) in cultures in marine broth supplemented with 10g/L lactose. The EPSs were heteropolymeric with an average molecular weight of 8×104Da and different monosaccharides, including arabinose and xylose. FT-IR spectroscopy revealed presence of hydroxyl, carboxyl, N-acetyl, amine, and sulfate ester groups, showing that R. marinus produces unusual sulfated EPS with high arabinose and xylose content

    Використання event-маркетингу в плануванні діяльності ТОВ «Микулинецький Бровар»

    Get PDF
    Акцентується увага на необхідності створення маркетингового плану для будь-якого підприємства, незалежно від форми власності та розмірів. Розглянуто сутність event - маркетингу та запропоновано event - заходи для реалізації маркетингового плану ТОВ«Мукулинецький Бровар»Accentuates the need to create a marketing plan for any enterprise, regardless of firm size. The essence of event - and proposed marketing event - measures to implement a marketing plan Ltd. Mukulynetskyy Brova

    Exploring a novel β-1,3-glucanosyltransglycosylase, MlGH17B, from a marine Muricauda lutaonensis strain for modification of laminari-oligosaccharides

    Get PDF
    The marine environment, contains plentiful renewable resources, e.g. macroalgae with unique polysaccharides, motivating search for enzymes from marine microorganisms to explore conversion possibilities of the polysaccharides. In this study, the first GH17 glucanosyltransglycosylase, MlGH17B, from a marine bacterium (Muricauda lutaonensis), was characterized. The enzyme was moderately thermostable with Tm at 64.4 ◦C and 73.2 ◦C, but an activity optimum at 20 ◦C, indicating temperature sensitive active site interactions. MlGH17B uses β-1,3 laminari-oligosaccharides with a degree of polymerization (DP) of 4 or higher as donors. Two glucose moieties (bound in the aglycone +1 and +2 subsites) are cleaved off from the reducing end of the donor while the remaining part (bound in the glycone subsites) is transferred to an incoming β-1,3 glucan acceptor, making a β-1,6-linkage, thereby synthesizing branched or kinked oligosaccharides. Synthesized oligosaccharides up to DP26 were detected by mass spectrometry analysis, showing that repeated transfer reactions occurred, resulting in several β-1,6-linked branches. The modeled structure revealed an active site comprising five subsites: three glycone (−3, −2 and −1) and two aglycone (+1 and +2) subsites, with significant conservation of substrate interactions compared to the only crystallized 1,3-β-glucanosyltransferase from GH17 (RmBgt17A from the compost thriving fungus Rhizomucor miehei), suggesting a common catalytic mechanism, despite different phylogenetic origin, growth environment, and natural substrate. Both enzymes lacked the subdomain extending the aglycone subsites, found in GH17 endo-β-glucanases from plants, but this extension was also missing in bacterial endoglucanases (modeled here), showing that this feature does not distinguish transglycosylation from hydrolysis, but may rather relate to phylogeny

    Decontamination Efficiency of Fish Bacterial Flora from Processing Surfaces

    No full text
    There are numerous parameters that can influence bacterial decontamination during washing of machinery and equipment in a food processing establishment. Incomplete decontamination of bacteria will increase the risk of biofilm formation and consequently increase the risk of pathogen contamination or prevalence of other undesirable microorganisms such as spoilage bacteria in the processing line. The efficiency of a typical washing protocol has been determined by testing three critical parameters and their effects on bacterial decontamination. Two surface materials (plastic and stainless steel), water temperatures (7 and 25 °C) and detergent concentrations (2 and 4 %) were used for this purpose in combination with two types of detergents. Biofilm was prepared on the surfaces with undefined bacterial flora obtained from minced cod fillets. The bacterial flora of the biofilm was characterised by cultivation and molecular analysis of 16S rRNA genes. All different combinations of washing protocols tested were able to remove more than 99.9 % of the bacteria in the biofilm and reduce the cell number from 7 to 0 or 2 log units of bacteria/cm2. The results show that it is possible to use less diluted detergents than recommended with comparable success, and it is easier to clean surface material made of stainless steel compared to polyethylene plastic

    Extraction and Modification of Macroalgal Polysaccharides for Current and Next-Generation Applications

    Get PDF
    Marine macroalgal (seaweed) polysaccharides are highly promising for next-generation applications in several industries. However, despite the reported comprehensive potential of these polysaccharides, commercial products are scarce on the market. Seaweed cultivations are increasing in number and production quantity, owing to an elevated global trend of utilization interest in seaweed. The extraction of polysaccharides from seaweed generally generates low yields, but novel methods are being developed to facilitate and improve the extraction processes. Current areas of applications for seaweed polysaccharides mainly take advantage of the physicochemical properties of certain polysaccharides, such as gelling, thickening and emulsifying. However, many of the numerous bioactivities reported are still only at research level and lack clinical evidence for commercialization. It has been suggested the construction of smaller units may generate better defined molecules that are more suitable for biomedical applications. Enzymatic modification is a promising tool for the generation of more defined, targeted biomolecules. This review covers; structural differences between the most predominant marine algal polysaccharides, extraction processes, modification alternatives, as well as a summary of current and potential next-generation application areas

    Taxogenomic assessment and genomic characterisation of Weissella cibaria strain 92 able to metabolise oligosaccharides derived from dietary fibres

    Get PDF
    The importance of the gut microbiota in human health has led to an increased interest to study probiotic bacteria. Fermented food is a source of already established probiotics, but it also offers an opportunity to discover new taxa. Four strains of Weissella sp. isolated from Indian fermented food have been genome sequenced and classified into the species W. cibaria based on whole-genome phylogeny. The genome of W. cibaria strain 92, known to utilise xylooligosaccharides and produce lactate and acetate, was analysed to identify genes for oligosaccharide utilisation. Clusters including genes involved in transportation, hydrolysis and metabolism of xylooligosaccharides, arabinooligosaccharides and β-glucosides were identified. Growth on arabinobiose and laminaribiose was detected. A 6-phospho-β-glucosidase clustered with a phosphotransferase system was found upregulated during growth on laminaribiose, indicating a mechanism for laminaribiose utilisation. The genome of W. cibaria strain 92 harbours genes for utilising the phosphoketolase pathway for the production of both acetate and lactate from pentose and hexose sugars but lacks two genes necessary for utilising the pentose phosphate pathway. The ability of W. cibaria strain 92 to utilise several types of oligosaccharides derived from dietary fibres, and produce lactate and acetate makes it interesting as a probiotic candidate for further evaluation

    Fermentation of the Brown Seaweed <i>Alaria esculenta</i> by a Lactic Acid Bacteria Consortium Able to Utilize Mannitol and Laminari-Oligosaccharides

    No full text
    The brown seaweed Alaria esculenta is the second most cultivated species in Europe, and it is therefore of interest to expand its application by developing food products. In this study, a lactic acid bacteria consortium (LAB consortium) consisting of three Lactiplantibacillus plantarum strains (relative abundance ~94%) and a minor amount of a Levilactobacillus brevis strain (relative abundance ~6%) was investigated for its ability to ferment carbohydrates available in brown seaweed. The consortium demonstrated the ability to ferment glucose, mannitol, galactose, mannose, and xylose, of which glucose and mannitol were the most favored substrates. No growth was observed on fucose, mannuronic and guluronic acid. The consortium used different pathways for carbohydrate utilization and produced lactic acid as the main metabolite. In glucose fermentation, only lactic acid was produced, but using mannitol as a carbohydrate source resulted in the co-production of lactic acid, ethanol, and succinate. Xylose fermentation resulted in acetate production. The consortium was also able to utilize laminari-oligosaccharides (DP2-4), obtained after enzymatic hydrolysis of laminarin, and produced lactic acid as a metabolite. The consortium could grow directly on A. esculenta, resulting in a pH decrease to 3.8 after 7 days of fermentation. Incubation of the same seaweed in corresponding conditions without inoculation resulted in spoilage of the seaweed by endogenous bacteria
    corecore