108 research outputs found

    Tuning ubiquinone position in biomimetic monolayer membranes

    Get PDF
    Artificial lipid bilayers have been extensively studied as models that mimic natural membranes (biomimetic membranes). Several attempts of biomimetic membranes inserting ubiquinone (UQ) have been performed to enlighten which the position of UQ in the lipid layer is, although obtaining contradictory results. In this work, pure components (DPPC and UQ) and DPPC:UQ mixtures have been studied using surface pressure-area isotherms and Langmuir-Blodgett (LB) films of the same compounds have been transferred onto solid substrates being topographically characterized on mica using atomic force microscopy and electrochemically on indium tin oxide slides. DPPC:UQ mixtures present less solid-like physical state than pure DPPC indicating a higher-order degree for the latter. UQ influences considerably DPPC during the fluid state, but it is mainly expelled after the phase transition at ˜˜ 26 mN·m^-1 for the 5:1 ratio and at ˜˜ 21 mN·m^-1 for lower UQ content. The thermodynamic studies confirm the stability of the DPPC:UQ mixtures before that event, although presenting a non-ideal behaviour. The results indicate that UQ position can be tuned by means of the surface pressure applied to obtain LB films and the UQ initial content. The UQ positions in the biomimetic membrane are distinguished by their formal potential: UQ located in “diving” position with the UQ placed in the DPPC matrix in direct contact with the electrode surface ( -0.04±0.02 V), inserted between lipid chains without contact to the substrate ( 0.00±0.01 V) and parallel to the substrate, above the lipid chains ( 0.09±0.02 V).Peer ReviewedPostprint (author's final draft

    Electron transfer processes in biomimetic membranes incorporating prenylquinones

    Get PDF
    The photosynthesis is the process used by the plants and bacteria cells to convert the inorganic matter in organic thanks to the light energy. This process consist on several steps, being one of them the plastoquinone-9 (PQ) electronic transport from the Photosystem II to the cytochrome. In this Ph. D. Thesis we prepare membranes that mimic the characteristics of the natural cell membranes and we characterize them using several techniques in order to obtain the PQ molecules position in the membranes and to study its electrochemical behaviour. These membranes are prepared using several lipids and their mixtures with PQ and ubiquinone-10 (UQ). Both the pure components and the lipid:quinone mixtures have been studied using surface pressure-area per molecule isotherms. These isotherms give information about the film stability (Langmuir film) at the air/water interface and the mathematical treatment of their results indicates the thermodynamic behaviour of the mixture and their physical state. Moreover, the Brewster Angle Microscopy technique has been used to study in situ the possibility of microscopic aggregation. On the other hand, the Langmuir-Blodgett (LB) film has been transferred onto mica forming a monolayer that mimics the bottom layer of the biological membranes. This monolayer has been topographically characterized using AFM and both the height and the physical state that they present have been obtained. In addition, these monolayers have been transferred onto ITO that is a hydrophilic substrate with good optical and electrical features, so that, being a good candidate for studying the electrochemical behaviour of these systems. On the other hand, the DPPC:UQ system has been also studied preparing SPBs using liposomes. These SPBs have been characterized using force spectroscopy and the other techniques that have been pointed previously and are suitable to working with SPBs. The obtained results for the pure quinones indicate that they form Langmuir monolayers in the liquid expanded (LE) state at surface pressures below the collapse. The cyclic voltammograms (CV) of the LB films transferred on ITO shows one (process I) or two processes (process I and II), depending on the surface pressure at which the monolayer has been transferred. The processes present the same formal potentials for both quinones at biological pH. On the other hand, the pure lipids, in general, form more compact states than the corresponding lipid:quinone mixture. The galactolipid:quinone systems indicate that, at low surface pressures, non-ideal mixtures are obtained being favoured the interactions between molecules of the same kind. Increasing the surface pressure, the system changes from LE to liquid-condensed (LC), which implies the quinone rejection from the lipids head zone. The electrochemical results indicate that this rejection can be vertically or horizontally. Vertically, achieving a position above the lipid head region but still in the lipid matrix, or out of the lipìd matrix, placed parallel to the matrix over it. The horizontal rejection (from the LC zones) implies that the quinone molecules are placed in the LE zones enriching them and forming pools of quinone. The positions described for the quinone in a lipid: quinone system can be classified in "diving", with the quinone molecules in the matrix with or without ITO-quinone contact, and "swimming", which is correlated with the quinones placed over the matrix. The "diving" and "swimming" positions induce different redox processes and the charge involved at each process indicates which position is predominant. Both redox processes are irreversible due to the slow charge transfer rate at the ITO-monolayer/electrolyte interface. Moreover, this electron transfer is produced by direct transfer or electron hopping.La fotosíntesi és el procés mitjançant el qual les cèl·lules de les plantes i bactèries converteixen la matèria inorgànica en orgànica gràcies a la llum. Aquest procés consta de diferents etapes i una d'elles és el transport electrònic per part de la plastoquinona-9 (PQ) des del Fotosistema II fins al citocrom. En aquesta tesi preparem membranes que emulen les característiques de les membranes de les cèl·lules naturals i les caracteritzem amb diverses tècniques per tal d'obtenir la posició de les molècules de PQ en la membrana i estudiar el seu comportament electroquímic. Aquestes membranes es preparen utilitzant diferents lípids i les seves mescles amb PQ i ubiquinona-10 (UQ). Tant els components purs com les mescles s'han estudiat fent servir isotermes pressió superficial-àrea per molècula, ja que dóna informació de l'estabilitat de la pel·lícula de molècules (pel·lícula Langmuir) a la interfase aire|aigua. El tractament matemàtic dels resultats d'aquestes isotermes permet obtenir el comportament termodinàmic de la mescla i el seu estat físic. A més, s'han estudiat els sistemes in situ fent servir la tècnica de Brewster Angle Microscopy per observar la possibilitat de segregació microscòpica. Per altra banda, la pel·lícula Langmuir-Blodgett (LB) ha estat transferida sobre mica formant una monocapa que simula la capa inferior de les membranes naturals. Aquesta capa s'ha caracteritzat topogràficament utilitzant AFM, s'ha mesurat l'alçada i s'ha estudiat l'estat físic que presenta. A més, aquestes pel·lícules s'han transferit sobre ITO que és un substrat hidrofílic que té unes bones característiques òptiques i elèctriques i per tant permet obtenir el comportament electroquímic d'aquests sistemes. En afegit, el sistema DPPC:UQ s'ha estudiat preparant SPBs utilitzant liposomes. Aquestes SPBs s'han caracteritzat per espectroscòpia de força, a més de les tècniques prèviament exposades que li són aplicables. Els resultats obtinguts per les quinones pures indiquen que formen monocapes de Langmuir en fase líquid expandit (LE) a pressions superficials inferiors al col·lapse. L'estudi per voltametria cíclica (CV) de LB de quinones transferides sobre ITO mostra, en funció de la pressió superficial de transferència, un (I) o dos processos redox (processos I i II) amb els mateixos potencials formals per les dues quinones a pH biològic. Per altra banda, els lípids purs, en general, formen fases més compactes que els sistemes galactolípid:quinona. Els sistemes galactolípid:quinona indiquen que, a pressions baixes, es formen mescles no ideals, on estan afavorides les interaccions entre molècules iguals. A l'augmentar la pressió, el sistema pateix una transició de fase de LE a líquid compacte (LC) que provoca l'expulsió de la quinona de la zona dels caps dels lípids. L'estudi per CV indica que aquesta expulsió pot ser vertical o horitzontal. Vertical, posicionant-se la quinona per sobre dels caps dels lípids, però encara dintre de la matriu lipídica, o fora de la matriu, posicionant-se perpendicularment a les cadenes lipídiques. L'expulsió horitzontal (de les zones LC) implica que la quinona va a parar a les zones LE, enriquint aquestes en quinona i formant-se "pools" de quinona. Les posicions descrites per la quinona en un sistema lípid:quinona es poden classificar en "diving" amb les quinones dintre de la matriu, ja sigui amb o sense contacte ITO-quinona, i la "swimming", que són quinones que estan a sobre de la matriu. Les posicions "diving" and "swimming" donen lloc a processos redox diferents i la càrrega que presenta cada procés, permet saber quina posició és dominant. Els dos processos redox són irreversibles donada la lenta transferència de càrrega en les interfases ITO-monocapa/electrolit. A més, aquest intercanvi d'electrons té lloc per transferència directa o per electron hopping

    Nanotransformation of vancomycin overcomes the intrinsic resistance of Gram-negative bacteria

    Get PDF
    The increased emergence of antibiotic-resistant bacteria is a growing public health concern, and although new drugs are constantly being sought, the pace of development is slow compared with the evolution and spread of multidrug- resistant species. In this study, we developed a novel broad-spectrum antimicrobial agent by simply transforming vancomycin into nanoform using sonochemistry. Vancomycin is a glycopeptide antibiotic largely used for the treatment of infections caused by Gram-positive bacteria but inefficient against Gram-negative species. The nanospherization extended its effect toward Gram-negative Escherichia coli and Pseudomonas aeruginosa, making these bacteria up to 10 and 100 times more sensitive to the antibiotic, respectively. The spheres were able to disrupt the outer membranes of these bacteria, overcoming their intrinsic resistance toward glycopeptides. The penetration of nanospheres into a Langmuir monolayer of bacterial membrane phospholipids confirmed the interaction of the nanoantibiotic with the membrane of E. coli cells, affecting their physical integrity, as further visualized by scanning electron microscopy. Such mechanism of antibacterial action is unlikely to induce mutations in the evolutionary conserved bacterial membrane, therefore reducing the possibility of acquiring resistance. Our results indicated that the nanotransformation of vancomycin could overcome the inherent resistance of Gram-negative bacteria toward this antibiotic and disrupt mature biofilms at antibacterial-effective concentrations.Peer ReviewedPostprint (author's final draft

    Multifunctional enzymatically generated hydrogels for chronic wound application

    Get PDF
    The healing of chronic wounds requires intensive medical intervention at huge healthcare costs. Dressing materials should consider the multifactorial nature of these wounds comprising deleterious proteolytic and oxidative enzymes and high bacterial load. In this work, multifunctional hydrogels for chronic wound application were produced by enzymatic cross- linking of thiolated chitosan and gallic acid. The hydrogels combine several beneficial to wound healing properties, controlling the matrix metalloproteinases (MMPs) and myeloperoxidase (MPO) activities, oxidative stress, and bacterial contamination. In vitro studies revealed above 90% antioxidant activity, and MPO and collagenase inhibition by up to 98 and 23%, respectively. Ex vivo studies with venous leg ulcer exudates confirmed the inhibitory capacity of the dressings against MPO and MMPs. Additionally, the hydrogels reduced the population of the most frequently encountered in nonhealing wounds bacterial strains. The stable at physiological conditions and resistant to lysozyme degradation hydrogels showed high biocompatibility with human skin fibroblastsPeer ReviewedPostprint (author's final draft

    Monogalactosyldiacylglycerol and digalactosyldiacylglycerol role, physical states, applications and biomimetic monolayer films

    Get PDF
    The relevance of biomimetic membranes using galactolipids has not been expressed in any extensive experimental study of these lipids. Thus, on the one hand, we present an in-depth article about the presence and role of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) in thylakoid membranes, their physical states and their applications. On the other hand, we use the Langmuir and Langmuir-Blodgett (LB) techniques to prepare biomimetic monolayers of saturated galactolipids MGDG, DGDG and MGDG:DGDG 2:1 mixture (MD)-biological ratio-. These monolayers are studied using surface pressure-area isotherms and their data are processed to enlighten their physical states and mixing behaviour. These monolayers, once transferred to a solid substrate at several surface pressures are topographically studied on mica using atomic force microscopy (AFM) and using cyclic voltammetry for studying the electrochemical behaviour of the monolayers once transferred to indium-tin oxide (ITO), which has good optical and electrical properties. Moreover, MD presents other differences in comparison with its pure components that are explained by the presence of different kinds of galactosyl headgroups that restrict the optimal orientation of the MGDG headgroups.Peer ReviewedPostprint (published version

    Influence of membrane galactolipids and surface pressure on plastoquinone behaviour

    Get PDF
    In this work biomimetic monolayers of a MGDG, monogalactosyldiacylglycerol, and DGDG, digalactosyldiacylglycerol mixture (MD), in a ratio close to that of the thylakoid membranes of oxygenic photosynthetic organisms, have been prepared. The lipid mixture incorporates plastoquinone-9 (PQ), that is the election and proton shuttle of the photosynthetic reaction centres. The MD:PQ mixtures have been firstly studied using surface pressure-area isotherms. Langmuir-Blodgett (LB) films of those mixtures have been transferred onto a substrate forming a monolayer that mimics one of the bilayer sides of the thylakoid membranes. These monolayers have been characterized topographically and electrochemically. The results show the influence of PQ in the MD matrix and its partial expulsion when increasing the surface pressure, obtaining two main PQ positions in the MD matrix. The calculated apparent electron transfer rate constants indicate a different kinetic control for the reduction and the oxidation of the PQ/PQH(2) couple, being k(Rapp)(I) = 0.7 . 10(-6) s(-1), k(Rapp)(II) = 2.2 . 10(-9) s(-1), k(Oapp)(I) = 7.4 . 10(-4) s(-1) and k(Oapp)(II) = 5.2 . 10(-5) s(-1), respectively. The comparison of the different galactolipid:PQ systems that our group has studied is also presented, concluding that the PQ position in the galactolipid matrix can be tuned according to several controlled variables. (C) 2016 Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author's final draft

    Multifunctional ZnO NPs-chitosan-gallic acid hybrid nanocoating to overcome contact lenses associated conditions and discomfort

    Get PDF
    Contact lenses (CL) provide visual correction but their use may also induce several adverse effects causative of discomfort and conditions that lead to stop or discontinue their use. Discomfort is mainly caused by insufficient wetting, impairment of the antioxidant defence system and eye infections. The current work reports on a single step sonochemical coating of CL with ZnO nanoparticles (NPs), chitosan (CS) and gallic acid (GA). GA and CS are expected to improve the comfort of CL by imparting respectively antioxidant properties and enhanced wettability, while their combination with ZnO NPs provides the CL with antimicrobial properties. The ternary composite coating presents high antibacterial efficiency (> 4.5 logs reduction) against S. aureus causative of CL-related conditions, and maintains good biocompatibility (> 72 %) with human cell lines. The obtained multi-functionality on the CL did not affect their geometry and refractive properties.Peer ReviewedPostprint (author's final draft

    Interaction of silver-lignin nanoparticles with mammalian mimetic membranes

    Get PDF
    Silver nanoparticles (AgNPs) have broad spectrum antibacterial activity, but their toxicity to human cells has raised concerns related to their use as disinfectants or coatings of medically relevant surfaces. To address this issue, NPs comprising intrinsically bactericidal and biocompatible biopolymer and Ag with high antibacterial efficacy against common pathogens and compatibility to human cells have been engineered. However, the reason for their lower toxicity compared to AgNPs has not yet been elucidated. This work studies the in vitro interaction of AgLNPs with model mammalian membranes through two approaches: (i) Langmuir films and (ii) supported planar bilayers studied by quartz crystal microbalance and atomic force spectroscopy. These approaches elucidate the interactions of AgLNPs with the model membranes indicating a prominent effect of the bioresourced lignin to facilitate the binding of AgLNPs to the mammalian membrane, without penetrating through it. This study opens a new avenue for engineering of hybrid antimicrobial biopolymer – Ag or other metal NPs with improved bactericidal effect whereas maintaining good biocompatibilityPeer ReviewedPostprint (published version

    Biomimetic monolayer films of digalactosyldiacylglycerol incorporating plastoquinone

    Get PDF
    The photosynthesis is the process used by plants and bacteria cells to convert inorganic matter in organic thanks to the light energy. This process consist on several steps, being one of them the electronic transport from the photosystem II to the cytochrome thanks to plastoquinone-9 (PQ). Here we prepare membranes that mimic the characteristics and composition of natural photosynthetic cell membranes and we characterize them in order to obtain the PQ molecules position in the membrane and their electrochemical behaviour. The selected galactolipid is digalactosyldiacylglycerol (DGDG) that represents the 30% of the thylakoid membrane lipid content. The results obtained are worthful for several science fields due to the relevance of galactolipids as anti-algal, anti-viral, anti-tumor and anti-inflammatory agents and the antioxidant and free radical scavenger properties of prenylquinones.; Both pure components (DGDG and PQ) and the DGDG:PQ mixtures have been studied using surface pressure-area isotherms. These isotherms give information about the film stability and indicate the thermodynamic behaviour of the mixture and their physical state. The Langmuir-Blodgett (LB) film has been transferred forming a monolayer that mimics the bottom layer of the biological membranes. This monolayer on mica has been topo-graphically characterized using AFM and both the height and the physical state that they present have been obtained. Moreover, these monolayers have been transferred onto ITO that is a hydrophilic substrate with good optical and electrical features, so that, it is suitable for studying the electrochemical behaviour of these systems and it is a good candidate for energy producing devices. (C) 2015 Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author’s final draft
    • …
    corecore