142 research outputs found

    Optical monitoring of the gravitationally lensed quasar Q2237+0305 from APO between June 1995 and January 1998

    Get PDF
    We present a data set of images of the gravitationally lensed quasar Q2237+0305, that was obtained at the Apache Point Observatory (APO) between June 1995 and January 1998. Although the images were taken under variable, often poor seeing conditions and with coarse pixel sampling, photometry is possible for the two brighter quasar images A and B with the help of exact quasar image positions from HST observations. We obtain a light curve with 73 data points for each of the images A and B. There is evidence for a long (>~ 100 day) brightness peak in image A in 1996 with an amplitude of about 0.4 to 0.5 mag (relative to 1995), which indicates that microlensing has been taking place in the lensing galaxy. Image B does not vary much over the course of the observation period. The long, smooth variation of the light curve is similar to the results from the OGLE monitoring of the system (Wozniak et al. 2000a).Comment: 8 pages, 5 figures; accepted for publication in A&

    Caribbean-wide decline in carbonate production threatens coral reef growth

    Get PDF
    This a post-print, author-produced version of an article accepted for publication in Nature Communications. Copyright © 2013 Nature Publishing Group . The definitive version is available at http://www.nature.com/ncomms/journal/v4/n1/full/ncomms2409.htmlGlobal-scale deteriorations in coral reef health have caused major shifts in species composition. One projected consequence is a lowering of reef carbonate production rates, potentially impairing reef growth, compromising ecosystem functionality and ultimately leading to net reef erosion. Here, using measures of gross and net carbonate production and erosion from 19 Caribbean reefs, we show that contemporary carbonate production rates are now substantially below historical (mid- to late-Holocene) values. On average, current production rates are reduced by at least 50%, and 37% of surveyed sites were net erosional. Calculated accretion rates (mm year(-1)) for shallow fore-reef habitats are also close to an order of magnitude lower than Holocene averages. A live coral cover threshold of ~10% appears critical to maintaining positive production states. Below this ecological threshold carbonate budgets typically become net negative and threaten reef accretion. Collectively, these data suggest that recent ecological declines are now suppressing Caribbean reef growth potential

    Transcription factors that mediate epithelial–mesenchymal transition lead to multidrug resistance by upregulating ABC transporters

    Get PDF
    Development of multidrug resistance (MDR) is a major deterrent in the effective treatment of metastatic cancers by chemotherapy. Even though MDR and cancer invasiveness have been correlated, the molecular basis of this link remains obscure. We show here that treatment with chemotherapeutic drugs increases the expression of several ATP binding cassette transporters (ABC transporters) associated with MDR, as well as epithelial–mesenchymal transition (EMT) markers, selectively in invasive breast cancer cells, but not in immortalized or non-invasive cells. Interestingly, the mere induction of an EMT in immortalized and non-invasive cell lines increased their expression of ABC transporters, migration, invasion, and drug resistance. Conversely, reversal of EMT in invasive cells by downregulating EMT-inducing transcription factors reduced their expression of ABC transporters, invasion, and rendered them more chemosensitive. Mechanistically, we demonstrate that the promoters of ABC transporters carry several binding sites for EMT-inducing transcription factors, and overexpression of Twist, Snail, and FOXC2 increases the promoter activity of ABC transporters. Furthermore, chromatin immunoprecipitation studies revealed that Twist binds directly to the E-box elements of ABC transporters. Thus, our study identifies EMT inducers as novel regulators of ABC transporters, thereby providing molecular insights into the long-standing association between invasiveness and MDR. Targeting EMT transcription factors could hence serve as novel strategies to curb both metastasis and the associated drug resistance

    The Homeobox Protein CEH-23 Mediates Prolonged Longevity in Response to Impaired Mitochondrial Electron Transport Chain in C. elegans

    Get PDF
    Recent findings indicate that perturbations of the mitochondrial electron transport chain (METC) can cause extended longevity in evolutionarily diverse organisms. To uncover the molecular basis of how altered METC increases lifespan in C. elegans, we performed an RNAi screen and revealed that three predicted transcription factors are specifically required for the extended longevity of mitochondrial mutants. In particular, we demonstrated that the nuclear homeobox protein CEH-23 uniquely mediates the longevity but not the slow development, reduced brood size, or resistance to oxidative stress associated with mitochondrial mutations. Furthermore, we showed that ceh-23 expression levels are responsive to altered METC, and enforced overexpression of ceh-23 is sufficient to extend lifespan in wild-type background. Our data point to mitochondria-to-nucleus communications to be key for longevity determination and highlight CEH-23 as a novel longevity factor capable of responding to mitochondrial perturbations. These findings provide a new paradigm for how mitochondria impact aging and age-dependent diseases

    GATA Transcription Factor Required for Immunity to Bacterial and Fungal Pathogens

    Get PDF
    In the past decade, Caenorhabditis elegans has been used to dissect several genetic pathways involved in immunity; however, little is known about transcription factors that regulate the expression of immune effectors. C. elegans does not appear to have a functional homolog of the key immune transcription factor NF-κB. Here we show that that the intestinal GATA transcription factor ELT-2 is required for both immunity to Salmonella enterica and expression of a C-type lectin gene, clec-67, which is expressed in the intestinal cells and is a good marker of S. enterica infection. We also found that ELT-2 is required for immunity to Pseudomonas aeruginosa, Enterococcus faecalis, and Cryptococcus neoformans. Lack of immune inhibition by DAF-2, which negatively regulates the FOXO transcription factor DAF-16, rescues the hypersusceptibility to pathogens phenotype of elt-2(RNAi) animals. Our results indicate that ELT-2 is part of a multi-pathogen defense pathway that regulates innate immunity independently of the DAF-2/DAF-16 signaling pathway

    OrthoList: A Compendium of C. elegans Genes with Human Orthologs

    Get PDF
    C. elegans is an important model for genetic studies relevant to human biology and disease. We sought to assess the orthology between C. elegans and human genes to understand better the relationship between their genomes and to generate a compelling list of candidates to streamline RNAi-based screens in this model.We performed a meta-analysis of results from four orthology prediction programs and generated a compendium, "OrthoList", containing 7,663 C. elegans protein-coding genes. Various assessments indicate that OrthoList has extensive coverage with low false-positive and false-negative rates. Part of this evaluation examined the conservation of components of the receptor tyrosine kinase, Notch, Wnt, TGF-ß and insulin signaling pathways, and led us to update compendia of conserved C. elegans kinases, nuclear hormone receptors, F-box proteins, and transcription factors. Comparison with two published genome-wide RNAi screens indicated that virtually all of the conserved hits would have been obtained had just the OrthoList set (∼38% of the genome) been targeted. We compiled Ortholist by InterPro domains and Gene Ontology annotation, making it easy to identify C. elegans orthologs of human disease genes for potential functional analysis.We anticipate that OrthoList will be of considerable utility to C. elegans researchers for streamlining RNAi screens, by focusing on genes with apparent human orthologs, thus reducing screening effort by ∼60%. Moreover, we find that OrthoList provides a useful basis for annotating orthology and reveals more C. elegans orthologs of human genes in various functional groups, such as transcription factors, than previously described

    A TRPV Channel Modulates C. elegans Neurosecretion, Larval Starvation Survival, and Adult Lifespan

    Get PDF
    For most organisms, food is only intermittently available; therefore, molecular mechanisms that couple sensation of nutrient availability to growth and development are critical for survival. These mechanisms, however, remain poorly defined. In the absence of nutrients, newly hatched first larval (L1) stage Caenorhabditis elegans halt development and survive in this state for several weeks. We isolated mutations in unc-31, encoding a calcium-activated regulator of neural dense-core vesicle release, which conferred enhanced starvation survival. This extended survival was reminiscent of that seen in daf-2 insulin-signaling deficient mutants and was ultimately dependent on daf-16, which encodes a FOXO transcription factor whose activity is inhibited by insulin signaling. While insulin signaling modulates metabolism, adult lifespan, and dauer formation, insulin-independent mechanisms that also regulate these processes did not promote starvation survival, indicating that regulation of starvation survival is a distinct program. Cell-specific rescue experiments identified a small subset of primary sensory neurons where unc-31 reconstitution modulated starvation survival, suggesting that these neurons mediate perception of food availability. We found that OCR-2, a transient receptor potential vanilloid (TRPV) channel that localizes to the cilia of this subset of neurons, regulates peptide-hormone secretion and L1 starvation survival. Moreover, inactivation of ocr-2 caused a significant extension in adult lifespan. These findings indicate that TRPV channels, which mediate sensation of diverse noxious, thermal, osmotic, and mechanical stimuli, couple nutrient availability to larval starvation survival and adult lifespan through modulation of neural dense-core vesicle secretion

    C. elegans rrf-1 Mutations Maintain RNAi Efficiency in the Soma in Addition to the Germline

    Get PDF
    Gene inactivation through RNA interference (RNAi) has proven to be a valuable tool for studying gene function in C. elegans. When combined with tissue-specific gene inactivation methods, RNAi has the potential to shed light on the function of a gene in distinct tissues. In this study we characterized C. elegans rrf-1 mutants to determine their ability to process RNAi in various tissues. These mutants have been widely used in RNAi studies to assess the function of genes specifically in the C. elegans germline. Upon closer analysis, we found that two rrf-1 mutants carrying different loss-of-function alleles were capable of processing RNAi targeting several somatically expressed genes. Specifically, we observed that the intestine was able to process RNAi triggers efficiently, whereas cells in the hypodermis showed partial susceptibility to RNAi in rrf-1 mutants. Other somatic tissues in rrf-1 mutants, such as the muscles and the somatic gonad, appeared resistant to RNAi. In addition to these observations, we found that the rrf-1(pk1417) mutation induced the expression of several transgenic arrays, including the FOXO transcription factor DAF-16. Unexpectedly, rrf-1(pk1417) mutants showed increased endogenous expression of the DAF-16 target gene sod-3; however, the lifespan and thermo-tolerance of rrf-1(pk1417) mutants were similar to those of wild-type animals. In sum, these data show that rrf-1 mutants display several phenotypes not previously appreciated, including broader tissue-specific RNAi-processing capabilities, and our results underscore the need for careful characterization of tissue-specific RNAi tools

    High-Affinity Capture of Proteins by Diamond Nanoparticles for Mass Spectrometric Analysis

    Get PDF
    Carboxylated/oxidized diamond nanoparticles (nominal size 100 nm) exhibit exceptionally high affinity for proteins through both hydrophilic and hydrophobic forces. The affinity is so high that proteins in dilute solution can be easily captured by diamonds, simply separated by centrifugation, and directly analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). No preseparation of the adsorbed molecules from diamonds is required for the mass spectrometric analysis. Compared to conventional MALDI-TOF-MS, an enhancement in detection sensitivity by more than 2 orders of magnitude is achieved for dilute solution containing cytochrome c, myoglobin, and albumin because of preconcentration of the probed molecules. The lowest concentration detectable is 100 pM for a 1-mL solution. Aside from the enhanced sensitivity, the overall performance of this technique does not show any sign of deterioration for highly contaminated protein solutions, and furthermore, no significant peak broadening and band shift were observed in the mass spectra. The promise of this new method for clinical proteomics research is demonstrated with an application to human blood serum. Matrix-assisted laser desorption/ionization (MALDI) 1 time-offlight (TOF) mass spectrometry (MS) is a mainstream tool in current high-throughput mass analysis of biopolymers. 2 The MALDI technique, however, suffers from the shortcoming that it lacks sample specificity and its performance deteriorates markedly for samples containing multiple components and excessive amounts of salts or surfactants. 3 Surface-enhanced laser desorption/ ionization (SELDI) is one of the techniques 4-10 developed to circumvent these problems. In this method, 4 micrometer-sized (typically 80-300 µm in diameter) agarose beads made for affinity chromatography columns were used to capture proteins of interest in crude sample solutions. The microbeads were then recovered, washed, placed on the LDI probe tip, and analyzed with regular MALDI-TOF-MS. Unfortunately, direct analysis of the surfacebound proteins is often accompanied with undesired decrease in mass resolution as well as mass accuracy ascribed to the interference from the beads in ion formation and extraction. One solution to this problem is to directly immobilize proteins onto the surface of the LDI probe without use of the microbeads. 7 The approach again suffers from the shortcoming that the number of binding sites is quite limited, ∼1 × 10 13 molecules/cm 2 or ∼160 fmol/mm 2 for a single layer of proteins on the probe surface. The obstacle was later removed by immobilization of the proteins to high molecular weight dextrans precoated covalently on the LDI probe. 8 An approximate 500 times more sample could be loaded, although the dextran immobilization process is rather timeconsuming. We have previously shown 11 that diamond is an exceptional platform for protein adsorption and immobilization. The optical transparency, chemical inertness, and biological compatibility of the material endow diamond nanoparticles with novel and promising biotechnological applications. Preliminary tests with cytochrome c physisorbed to carboxylated/oxidized diamond particles of 5 and 100 nm in size indicate that the specially prepared diamond surfaces exhibit remarkably high affinity for proteins containing amino acid residues with basic side chains. This unique feature along with the fact that diamond is optically transparent up to the UV region motivated us to explore the possibility of using diamond nanoparticles for SELDI-TOF-MS. The advantage of using nanoparticles over microbeads is manyfold. First, nanoparticles have a much larger surface area-to-mass ratio, nearly 3 orders of magnitude higher than that of microbeads; second, the extent to which nanoparticles interfere with the laser desorption/ ionization process is diminished because of the smallness of the particles; third, nanoparticles can be embedded more firmly in the LDI matrix crystals than microbeads, thereby reducing material loss during sample preparation and analysis. There have been several applications of metallic, semiconducting as well as polymeric nanoparticles for mass spectrometric analysis of biopoly
    corecore