210 research outputs found
Asymmetric triplex metallohelices with high and selective activity against cancer cells
Small cationic amphiphilic Ī±-helical peptides are emerging as agents for the treatment of cancer and infection, but they are costly and display unfavourable pharmacokinetics. Helical coordination complexes may offer a three-dimensional scaffold for the synthesis of mimetic architectures. However, the high symmetry and modest functionality of current systems offer little scope to tailor the structure to interact with specific biomolecular targets, or to create libraries for phenotypic screens. Here, we report the highly stereoselective asymmetric self-assembly of very stable, functionalized metallohelices. Their anti-parallel head-to-head-to-tail ātriplexā strand arrangement creates an amphipathic functional topology akin to that of the active sub-units of, for example, host-defence peptides and āp53. The metallohelices display high, structure-dependent toxicity to the human colon carcinoma cell-line HCT116 āp53++, causing dramatic changes in the cell cycle without DNA damage. They have lower toxicity to human breast adenocarcinoma cells (MDA-MB-468) and, most remarkably, they show no significant toxicity to the bacteria methicillin-resistant Staphylococcus aureus and Escherichia coli.
At a glanc
A method for identifying genetic heterogeneity within phenotypically defined disease subgroups.
Many common diseases show wide phenotypic variation. We present a statistical method for determining whether phenotypically defined subgroups of disease cases represent different genetic architectures, in which disease-associated variants have different effect sizes in two subgroups. Our method models the genome-wide distributions of genetic association statistics with mixture Gaussians. We apply a global test without requiring explicit identification of disease-associated variants, thus maximizing power in comparison to standard variant-by-variant subgroup analysis. Where evidence for genetic subgrouping is found, we present methods for post hoc identification of the contributing genetic variants. We demonstrate the method on a range of simulated and test data sets, for which expected results are already known. We investigate subgroups of individuals with type 1 diabetes (T1D) defined by autoantibody positivity, establishing evidence for differential genetic architecture with positivity for thyroid-peroxidase-specific antibody, driven generally by variants in known T1D-associated genomic regions.We acknowledge the help of the Diabetes and Inflammation Laboratory Data Service for access and quality control procedures on the data sets used in this study. The JDRF/Wellcome Trust Diabetes and Inflammation Laboratory is in receipt of a Wellcome Trust Strategic Award (107212; J.A.T.) and receives funding from the NIHR Cambridge Biomedical Research Centre. J.L. is funded by the NIHR Cambridge Biomedical Research Centre and is on the Wellcome Trust PhD program in Mathematical Genomics and Medicine at the University of Cambridge. C.W. is funded by the MRC (grant MC_UP_1302/5). We thank M. Simmonds, S. Gough, J. Franklyn, and O. Brand for sharing their AITD genetic association data set and all patients with AITD and control subjects for participating in this study. The AITD UK national collection was funded by the Wellcome Trust. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Genetic association of zinc transporter 8 (ZnT8) autoantibodies in type 1 diabetes cases
Autoantibodies to zinc transporter 8 (ZnT8A) are associated with risk of type 1 diabetes. Apart from the SLC30A8 gene itself, little is known about the genetic basis of ZnT8A. We hypothesise that other loci in addition to SLC30A8 are associated with ZnT8A. The levels of ZnT8A were measured in 2,239 British type 1 diabetic individuals diagnosed before age 17 years, with a median duration of diabetes of 4 years. Cases were tested at over 775,000 loci genome wide (including 53 type 1 diabetes associated regions) for association with positivity for ZnT8A. ZnT8A were also measured in an independent dataset of 855 family members with type 1 diabetes. Only FCRL3 on chromosome 1q23.1 and the HLA class I region were associated with positivity for ZnT8A. rs7522061T > C was the most associated single nucleotide polymorphism (SNP) in the FCRL3 region (p = 1.13 x 10(-16)). The association was confirmed in the family dataset (p a parts per thousand currency signaEuro parts per thousand 9.20 x 10(-4)). rs9258750A > G was the most associated variant in the HLA region (p = 2.06 x 10(-9) and p = 0.0014 in family cases). The presence of ZnT8A was not associated with HLA-DRB1, HLA-DQB1, HLA-A, HLA-B or HLA-C (p > 0.05). Unexpectedly, the two loci associated with the presence of ZnT8A did not alter risk of having type 1 diabetes, and the 53 type 1 diabetes risk loci did not influence positivity for ZnT8A, despite them being disease specific. ZnT8A are not primary pathogenic factors in type 1 diabetes. Nevertheless, ZnT8A testing in combination with other autoantibodies facilitates disease prediction, despite the biomarker not being under the same genetic control as the disease
Bayesian Conditioning, the Reflection Principle, and Quantum Decoherence
The probabilities a Bayesian agent assigns to a set of events typically
change with time, for instance when the agent updates them in the light of new
data. In this paper we address the question of how an agent's probabilities at
different times are constrained by Dutch-book coherence. We review and attempt
to clarify the argument that, although an agent is not forced by coherence to
use the usual Bayesian conditioning rule to update his probabilities, coherence
does require the agent's probabilities to satisfy van Fraassen's [1984]
reflection principle (which entails a related constraint pointed out by
Goldstein [1983]). We then exhibit the specialized assumption needed to recover
Bayesian conditioning from an analogous reflection-style consideration.
Bringing the argument to the context of quantum measurement theory, we show
that "quantum decoherence" can be understood in purely personalist
terms---quantum decoherence (as supposed in a von Neumann chain) is not a
physical process at all, but an application of the reflection principle. From
this point of view, the decoherence theory of Zeh, Zurek, and others as a story
of quantum measurement has the plot turned exactly backward.Comment: 14 pages, written in memory of Itamar Pitowsk
Scientific discovery as a combinatorial optimisation problem: How best to navigate the landscape of possible experiments?
A considerable number of areas of bioscience, including gene and drug discovery, metabolic engineering for the biotechnological improvement of organisms, and the processes of natural and directed evolution, are best viewed in terms of a ālandscapeā representing a large search space of possible solutions or experiments populated by a considerably smaller number of actual solutions that then emerge. This is what makes these problems āhardā, but as such these are to be seen as combinatorial optimisation problems that are best attacked by heuristic methods known from that field. Such landscapes, which may also represent or include multiple objectives, are effectively modelled in silico, with modern active learning algorithms such as those based on Darwinian evolution providing guidance, using existing knowledge, as to what is the ābestā experiment to do next. An awareness, and the application, of these methods can thereby enhance the scientific discovery process considerably. This analysis fits comfortably with an emerging epistemology that sees scientific reasoning, the search for solutions, and scientific discovery as Bayesian processes
Directly calculating the glue component of the nucleon in lattice QCD QCDSF-UKQCD-CSSM Collaborations
We are investigating the direct determination and non-perturbative renormalisation of gluon matrix elements. Such quantities are sensitive to ultraā violet fluctuations, and are in general statistically noisy. To obtain statistically significant results, we extend an earlier application of the FeynmanāHellmann theorem to gluonic matrix elements to calculate a renormalisation factor in the RI ā MOM scheme, in the quenched case. This work demonstrates that the FeynmanāHellmann method is capable of providing a feasible option for calculating gluon quantities.</jats:p
Optically pure, water-stable metallo-helical āflexicateā assemblies with antibiotic activity
The helicatesāchiral assemblies of two or more metal atoms linked by short or relatively rigid multidentate organic ligandsāmay be regarded as non-peptide mimetics of Ī±-helices because they are of comparable size and have shown some relevant biological activity. Unfortunately, these beautiful helical compounds have remained difficult to use in the medicinal arena because they contain mixtures of isomers, cannot be optimized for specific purposes, are insoluble, or are too difficult to synthesize. Instead, we have now prepared thermodynamically stable single enantiomers of monometallic units connected by organic linkers. Our highly adaptable self-assembly approach enables the rapid preparation of ranges of water-stable, helicate-like compounds with high stereochemical purity. One such iron(II) āflexicateā system exhibits specific interactions with DNA, promising antimicrobial activity against a Gram-positive bacterium (methicillin-resistant Staphylococcus aureus, MRSA252), but also, unusually, a Gram-negative bacterium (Escherichia coli, MC4100), as well as low toxicity towards a non-mammalian model organism (Caenorhabditis elegans)
Gratitude and hospitality: Tamil refugee employment in London and the conditional nature of integration
Healy, R. L. 2014. The definitive, peer-reviewed and edited version of this article is published in Environment and Planning A, 2014, 46(3), pp. 614-628, http:dx/doi.org/10.1068/a4655The policy of integration attempts to address different elements of exclusion, yet relatively little research has considered what integration means to the refugees themselves. This paper explores one key area for supporting integration: employment.ESRC PTA-030-2005-0082
Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk.
Variation in the human leukocyte antigen (HLA) genes accounts for one-half of the genetic risk in type 1 diabetes (T1D). Amino acid changes in the HLA-DR and HLA-DQ molecules mediate most of the risk, but extensive linkage disequilibrium complicates the localization of independent effects. Using 18,832 case-control samples, we localized the signal to 3 amino acid positions in HLA-DQ and HLA-DR. HLA-DQĪ²1 position 57 (previously known; P = 1 Ć 10(-1,355)) by itself explained 15.2% of the total phenotypic variance. Independent effects at HLA-DRĪ²1 positions 13 (P = 1 Ć 10(-721)) and 71 (P = 1 Ć 10(-95)) increased the proportion of variance explained to 26.9%. The three positions together explained 90% of the phenotypic variance in the HLA-DRB1-HLA-DQA1-HLA-DQB1 locus. Additionally, we observed significant interactions for 11 of 21 pairs of common HLA-DRB1-HLA-DQA1-HLA-DQB1 haplotypes (P = 1.6 Ć 10(-64)). HLA-DRĪ²1 positions 13 and 71 implicate the P4 pocket in the antigen-binding groove, thus pointing to another critical protein structure for T1D risk, in addition to the HLA-DQ P9 pocket.This research utilizes resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), National Human Genome Research Institute (NHGRI), National Institute of Child Health and Human Development (NICHD), and Juvenile Diabetes Research Foundation International (JDRF) and supported by U01 DK062418. This work is supported in part by funding from the National Institutes of Health (5R01AR062886-02 (PIdB), 1R01AR063759 (SR), 5U01GM092691-05 (SR), 1UH2AR067677-01 (SR),
R01AR065183 (PIWdB)), a Doris Duke Clinical Scientist Development Award (SR), the Wellcome Trust (JAT) and the National Institute for Health Research (JAT and JMMH), and a Vernieuwingsimpuls VIDI Award (016.126.354) from the Netherlands Organization for Scientific Research (PIWdB). TLL was supported by the German Research Foundation (LE 2593/1-1 and LE 2593/2-1).This is the accepted manuscript. The final version is available at http://www.nature.com/ng/journal/v47/n8/full/ng.3353.html
- ā¦