37 research outputs found

    Exploring geomagnetic variations in ancient mesopotamia: Archaeomagnetic study of inscribed bricks from the 3rd-1st millennia BCE.

    Get PDF
    This study presents 32 high-resolution geomagnetic intensity data points from Mesopotamia, spanning the 3rd to the 1st millennia BCE. These data contribute to rectifying geographic disparities in the resolution of the global archaeointensity curve that have hampered our understanding of geomagnetic field dynamics and the viability of applying archaeomagnetism as a method of absolute dating of archaeological objects. A lack of precise and well-dated intensity data in the region has also limited our ability to identify short-term fluctuations in the geomagnetic field, such as the Levantine Iron Age geomagnetic Anomaly (LIAA), a period of high field intensity from ca. 1050 to 550 BCE. This phenomenon has hitherto not been well-demonstrated in Mesopotamia, contrary to predictions from regional geomagnetic models. To address these issues, this study presents precise archaeomagnetic results from 32 inscribed baked bricks, tightly dated to the reigns of 12 Mesopotamian kings through interpretation of their inscriptions. Results confirm the presence of the high field values of the LIAA in Mesopotamia during the first millennium BCE and drastically increase the resolution of the archaeointensity curve for the 3rd-1st millennia BCE. This research establishes a baseline for the use of archaeomagnetic analysis as an absolute dating technique for archaeological materials from Mesopotamia

    International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020)

    Get PDF
    Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice

    Erosion at the South End site on Ossabaw Island, Georgia, caused mainly by storm surge from Hurricane Michael.

    No full text
    Erosion at the South End site on Ossabaw Island, Georgia, caused mainly by storm surge from Hurricane Michael.</p

    The study area, consisting of the Georgia coast and ca. 50 km inland.

    No full text
    The study area, consisting of the Georgia coast and ca. 50 km inland.</p

    Number of archaeological sites in Georgia potentially inundated according to different SLR and storm surge projections.

    No full text
    Number of archaeological sites in Georgia potentially inundated according to different SLR and storm surge projections.</p
    corecore