1,777 research outputs found

    Polarized Neutron Matter: A Lowest Order Constrained Variational Approach

    Full text link
    In this paper, we calculate some of the polarized neutron matter properties, using the lowest order constrained variational method with the AV18AV_{18} potential and employing a microscopic point of view. A comparison is also made between our results and those of other many-body techniques.Comment: 23 pages, 8 figure

    Using Synthetic Spacecraft Data to Interpret Compressible Fluctuations in Solar Wind Turbulence

    Full text link
    Kinetic plasma theory is used to generate synthetic spacecraft data to analyze and interpret the compressible fluctuations in the inertial range of solar wind turbulence. The kinetic counterparts of the three familiar linear MHD wave modes---the fast, Alfven, and slow waves---are identified and the properties of the density-parallel magnetic field correlation for these kinetic wave modes is presented. The construction of synthetic spacecraft data, based on the quasi-linear premise---that some characteristics of magnetized plasma turbulence can be usefully modeled as a collection of randomly phased, linear wave modes---is described in detail. Theoretical predictions of the density-parallel magnetic field correlation based on MHD and Vlasov-Maxwell linear eigenfunctions are presented and compared to the observational determination of this correlation based on 10 years of Wind spacecraft data. It is demonstrated that MHD theory is inadequate to describe the compressible turbulent fluctuations and that the observed density-parallel magnetic field correlation is consistent with a statistically negligible kinetic fast wave energy contribution for the large sample used in this study. A model of the solar wind inertial range fluctuations is proposed comprised of a mixture of a critically balanced distribution of incompressible Alfvenic fluctuations and a critically balanced or more anisotropic than critical balance distribution of compressible slow wave fluctuations. These results imply that there is little or no transfer of large scale turbulent energy through the inertial range down to whistler waves at small scales.Comment: Accepted to Astrophysical Journal. 28 pages, 7 figure

    Kinetic Scale Density Fluctuations in the Solar Wind

    Full text link
    We motivate the importance of studying kinetic scale turbulence for understanding the macroscopic properties of the heliosphere, such as the heating of the solar wind. We then discuss the technique by which kinetic scale density fluctuations can be measured using the spacecraft potential, including a calculation of the timescale for the spacecraft potential to react to the density changes. Finally, we compare the shape of the density spectrum at ion scales to theoretical predictions based on a cascade model for kinetic turbulence. We conclude that the shape of the spectrum, including the ion scale flattening, can be captured by the sum of passive density fluctuations at large scales and kinetic Alfven wave turbulence at small scales

    Spin-glass state and long-range magnetic order in Pb(Fe1/2Nb1/2)O3

    Full text link
    We have investigated the magnetic ground-state of the multiferroic relaxor ferroelectric \pfn with Ό\muSR spectroscopy and neutron scattering. We find that a transition to a partially disordered phase occurs below T=20 K that coexists with long-range antiferromagnetic ordering. The disordered phase resembles a spin-glass. No clustering of magnetic ions could be evidenced by Ό\muSR so that the coexistence appears homogeneous in the sample

    Divergence in Dialogue

    Get PDF
    Copyright: 2014 Healey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This work was supported by the Economic and Social Research Council (ESRC; http://www.esrc.ac.uk/) through the DynDial project (Dynamics of Conversational Dialogue, RES-062-23-0962) and the Engineering and Physical Sciences Research Council (EPSRC; http://www.epsrc.ac.uk/) through the RISER project (Robust Incremental Semantic Resources for Dialogue, EP/J010383/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Astrophysical Gyrokinetics: Basic Equations and Linear Theory

    Full text link
    Magnetohydrodynamic (MHD) turbulence is encountered in a wide variety of astrophysical plasmas, including accretion disks, the solar wind, and the interstellar and intracluster medium. On small scales, this turbulence is often expected to consist of highly anisotropic fluctuations with frequencies small compared to the ion cyclotron frequency. For a number of applications, the small scales are also collisionless, so a kinetic treatment of the turbulence is necessary. We show that this anisotropic turbulence is well described by a low frequency expansion of the kinetic theory called gyrokinetics. This paper is the first in a series to examine turbulent astrophysical plasmas in the gyrokinetic limit. We derive and explain the nonlinear gyrokinetic equations and explore the linear properties of gyrokinetics as a prelude to nonlinear simulations. The linear dispersion relation for gyrokinetics is obtained and its solutions are compared to those of hot-plasma kinetic theory. These results are used to validate the performance of the gyrokinetic simulation code {\tt GS2} in the parameter regimes relevant for astrophysical plasmas. New results on global energy conservation in gyrokinetics are also derived. We briefly outline several of the problems to be addressed by future nonlinear simulations, including particle heating by turbulence in hot accretion flows and in the solar wind, the magnetic and electric field power spectra in the solar wind, and the origin of small-scale density fluctuations in the interstellar medium.Comment: emulateapj, 24 pages, 10 figures, revised submission to ApJ: references added, typos corrected, reorganized and streamline

    Nonequilibrium Forces Between Neutral Atoms Mediated by a Quantum Field

    Get PDF
    We study all known and as yet unknown forces between two neutral atoms, modeled as three dimensional harmonic oscillators, arising from mutual influences mediated by an electromagnetic field but not from their direct interactions. We allow as dynamical variables the center of mass motion of the atom, its internal degrees of freedom and the quantum field treated relativistically. We adopt the method of nonequilibrium quantum field theory which can provide a first principle, systematic and unified description including the intrinsic field fluctuations and induced dipole fluctuations. The inclusion of self-consistent back-actions makes possible a fully dynamical description of these forces valid for general atom motion. In thermal equilibrium we recover the known forces -- London, van der Waals and Casimir-Polder forces -- between neutral atoms in the long-time limit but also discover the existence of two new types of interatomic forces. The first, a `nonequilibrium force', arises when the field and atoms are not in thermal equilibrium, and the second, which we call an `entanglement force', originates from the correlations of the internal degrees of freedom of entangled atoms.Comment: 16 pages, 2 figure

    Exploring Neutron-Rich Oxygen Isotopes with MoNA

    Full text link
    The Modular Neutron Array (MoNA) was used in conjunction with a large-gap dipole magnet (Sweeper) to measure neutron-unbound states in oxygen isotopes close to the neutron dripline. While no excited states were observed in 24O, a resonance at 45(2) keV above the neutron separation energy was observed in 23O.Comment: 6 pages, 4 Figures, submitted to Proc. Int. Conf. on Proton Emitting Nuclei and Related Topics, PROCON0
    • 

    corecore