2,001 research outputs found
A study into the impact of interface roughness development on mechanical degradation of oxides formed on zirconium alloys
AbstractAs a cladding material used to encapsulate nuclear fuel pellets, zirconium alloys are the primary barrier separating the fuel and a pressurised steam or lithiated water environment. Degradation mechanisms such as oxidation can be the limiting factor in the life-time of the fuel assembly. Key to controlling oxidation, and therefore allowing increased burn-up of fuel, is the development of a mechanistic understanding of the corrosion process. In an autoclave, the oxidation kinetics for zirconium alloys are typically cyclical, with periods of accelerated kinetics being observed in steps of ∼2μm oxide growth. These periods of accelerated oxidation are immediately preceded by the development of a layer of lateral cracks near the metal-oxide interface, which may be associated with the development of interface roughness. The present work uses scanning electron microscopy to carry out a statistical analysis of changes in the metal-oxide interface roughness between three different alloys at different stages of autoclave oxidation. The first two alloys are Zircaloy-4 and ZIRLO™ for which analysis is carried out at stages before, during and after first transition. The third alloy is an experimental low tin alloy, which under the same oxidation conditions and during the same time period does not appear to go through transition. Assessment of the metal-oxide interface roughness is primarily carried out based on the root mean square of the interface slope known as the Rdq parameter. Results show clear trends with relation to transition points in the corrosion kinetics. Discussion is given to how this relates to the existing mechanistic understanding of the corrosion process, and the components required for possible future modelling approaches
Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms
Ultra-low density polymers, metals, and ceramic nanofoams are valued for
their high strength-to-weight ratio, high surface area and insulating
properties ascribed to their structural geometry. We obtain the labrynthine
internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging.
Finite element analysis from the structure reveals mechanical properties
consistent with bulk samples and with a diffusion limited cluster aggregation
model, while excess mass on the nodes discounts the dangling fragments
hypothesis of percolation theory.Comment: 8 pages, 5 figures, 30 reference
Use of extended and prepared reference objects in experimental Fourier transform X-ray holography
The use of one or more gold nanoballs as reference objects for Fourier
Transform holography (FTH) is analysed using experimental soft X-ray
diffraction from objects consisting of separated clusters of these balls. The
holograms are deconvoluted against ball reference objects to invert to images,
in combination with a Wiener filter to control noise. A resolution of ~30nm,
smaller than one ball, is obtained even if a large cluster of balls is used as
the reference, giving the best resolution yet obtained by X-ray FTH. Methods of
dealing with missing data due to a beamstop are discussed. Practical prepared
objects which satisfy the FTH condition are suggested, and methods of forming
them described.Comment: 7 pages, 2 figures, submitted to Applied Physics Letter
SPEDEN: Reconstructing single particles from their diffraction patterns
Speden is a computer program that reconstructs the electron density of single
particles from their x-ray diffraction patterns, using a single-particle
adaptation of the Holographic Method in crystallography. (Szoke, A., Szoke, H.,
and Somoza, J.R., 1997. Acta Cryst. A53, 291-313.) The method, like its parent,
is unique that it does not rely on ``back'' transformation from the diffraction
pattern into real space and on interpolation within measured data. It is
designed to deal successfully with sparse, irregular, incomplete and noisy
data. It is also designed to use prior information for ensuring sensible
results and for reliable convergence. This article describes the theoretical
basis for the reconstruction algorithm, its implementation and quantitative
results of tests on synthetic and experimentally obtained data. The program
could be used for determining the structure of radiation tolerant samples and,
eventually, of large biological molecular structures without the need for
crystallization.Comment: 12 pages, 10 figure
Dose, exposure time, and resolution in Serial X-ray Crystallography
The resolution of X-ray diffraction microscopy is limited by the maximum dose
that can be delivered prior to sample damage. In the proposed Serial
Crystallography method, the damage problem is addressed by distributing the
total dose over many identical hydrated macromolecules running continuously in
a single-file train across a continuous X-ray beam, and resolution is then
limited only by the available molecular and X-ray fluxes and molecular
alignment. Orientation of the diffracting molecules is achieved by laser
alignment. We evaluate the incident X-ray fluence (energy/area) required to
obtain a given resolution from (1) an analytical model, giving the count rate
at the maximum scattering angle for a model protein, (2) explicit simulation of
diffraction patterns for a GroEL-GroES protein complex, and (3) the frequency
cut off of the transfer function following iterative solution of the phase
problem, and reconstruction of an electron density map in the projection
approximation. These calculations include counting shot noise and multiple
starts of the phasing algorithm. The results indicate counting time and the
number of proteins needed within the beam at any instant for a given resolution
and X-ray flux. We confirm an inverse fourth power dependence of exposure time
on resolution, with important implications for all coherent X-ray imaging. We
find that multiple single-file protein beams will be needed for sub-nanometer
resolution on current third generation synchrotrons, but not on fourth
generation designs, where reconstruction of secondary protein structure at a
resolution of 0.7 nm should be possible with short exposures.Comment: 19 pages, 7 figures, 1 tabl
Progress in Three-Dimensional Coherent X-Ray Diffraction Imaging
The Fourier inversion of phased coherent diffraction patterns offers images
without the resolution and depth-of-focus limitations of lens-based tomographic
systems. We report on our recent experimental images inverted using recent
developments in phase retrieval algorithms, and summarize efforts that led to
these accomplishments. These include ab-initio reconstruction of a
two-dimensional test pattern, infinite depth of focus image of a thick object,
and its high-resolution (~10 nm resolution) three-dimensional image.
Developments on the structural imaging of low density aerogel samples are
discussed.Comment: 5 pages, X-Ray Microscopy 2005, Himeji, Japa
Phasing diffuse scattering. Application of the SIR2002 algorithm to the non-crystallographic phase problem
A new phasing algorithm has been used to determine the phases of diffuse
elastic X-ray scattering from a non-periodic array of gold balls of 50 nm
diameter. Two-dimensional real-space images, showing the charge-density
distribution of the balls, have been reconstructed at 50 nm resolution from
transmission diffraction patterns recorded at 550 eV energy. The reconstructed
image fits well with scanning electron microscope (SEM) image of the same
sample. The algorithm, which uses only the density modification portion of the
SIR2002 program, is compared with the results obtained via the
Gerchberg-Saxton-Fienup HIO algorithm. In this way the relationship between
density modification in crystallography and the HiO algorithm used in signal
and image processing is elucidated.Comment: 7 pages, 12 figure
Water impacts and water-climate goal conflicts of local energy choices – notes from a Swedish perspective
To meet both the Paris Agreement on Climate Change and the UN Sustainable
Development Goals (SDGs), nations, sectors, counties and cities need to move
towards a sustainable energy system in the next couple of decades. Such
energy system transformations will impact water resources to varying extents,
depending on the transformation strategy and fuel choices. Sweden is
considered to be one of the most advanced countries towards meeting the SDGs.
This paper explores the geographical origin of and the current water use
associated with the supply of energy in the 21 regional counties of Sweden.
These energy-related uses of water represent indirect, but still relevant,
impacts for water management and the related SDG on clean water and
sanitation (SDG 6). These indirect water impacts are here quantified and
compared to reported quantifications of direct local water use, as well as to
reported greenhouse gas (GHG) emissions, as one example of other types of
environmental impacts of local energy choices in each county. For each
county, an accounting model is set up based on data for the local energy use
in year 2010, and the specific geographical origins and water use associated
with these locally used energy carriers (fuels, heat and electricity) are
further estimated and mapped based on data reported in the literature and
open databases. Results show that most of the water use associated with the
local Swedish energy use occurs outside of Sweden. Counties with large shares
of liquid biofuel exhibit the largest associated indirect water use in
regions outside of Sweden. This indirect water use for energy supply does not
unambiguously correlate with either the local direct water use or the local
GHG emissions, although for the latter, there is a tendency towards an
inverse relation. Overall, the results imply that actions for mitigation of
climate change by local energy choices may significantly affect water
resources elsewhere. Swedish counties are thus important examples of
localities with large geographic zones of water influence due to their local
energy choices, which may compromise water security and the possibility to
meet water-related global goals in other world regions
- …