10,707 research outputs found

    Graphical techniques to assist in pointing and control studies of orbiting spacecraft

    Get PDF
    Computer generated graphics are developed to assist in the modeling and assessment of pointing and control systems of orbiting spacecraft. Three-dimensional diagrams are constructed of the Earth and of geometrical models which resemble the spacecraft of interest. Orbital positioning of the spacecraft model relative to the Earth and the orbital ground track are then displayed. A star data base is also available which may be used for telescope pointing and star tracker field-of-views to visually assist in spacecraft pointing and control studies. A geometrical model of the Hubble Space Telescope (HST) is constructed and placed in Earth orbit to demonstrate the use of these programs. Simulated star patterns are then displayed corresponding to the primary mirror's FOV and the telescope's star trackers for various telescope orientations with respect to the celestial sphere

    Generation of pseudo-random numbers

    Get PDF
    Practical methods for generating acceptable random numbers from a variety of probability distributions which are frequently encountered in engineering applications are described. The speed, accuracy, and guarantee of statistical randomness of the various methods are discussed

    A stochastic model for photon noise induced by charged particles in multiplier phototubes of the space telescope fine guidance sensors

    Get PDF
    The Space Telescope (ST) is subjected to charged particle strikes in its space environment. ST's onboard fine guidance sensors utilize multiplier phototubes (PMT) for attitude determination. These tubes, when subjected to charged particle strikes, generate spurious photons in the form of Cerenkov radiation and fluorescence which give rise to unwanted disturbances in the pointing of the telescope. A stochastic model for the number of these spurious photons which strike the photocathode of the multiplier phototube which in turn produce the unwanted photon noise are presented. The model is applicable to both galactic cosmic rays and charged particles trapped in the Earth's radiation belts. The model which was programmed allows for easy adaption to a wide range of particles and different parameters for the phototube of the multiplier. The probability density functions for photons noise caused by protons, alpha particles, and carbon nuclei were using thousands of simulated strikes. These distributions are used as part of an overall ST dynamics simulation. The sensitivity of the density function to changes in the window parameters was also investigated

    Hand-printed input for on-line systems

    Get PDF
    Recognition program for handwritten information in real time computer operatio

    Fluid thrust control system

    Get PDF
    A pure fluid thrust control system is described for a pump-fed, regeneratively cooled liquid propellant rocket engine. A proportional fluid amplifier and a bistable fluid amplifier control overshoot in the starting of the engine and take it to a predetermined thrust. An ejector type pump is provided in the line between the liquid hydrogen rocket nozzle heat exchanger and the turbine driving the fuel pump to aid in bringing the fluid at this point back into the regular system when it is not bypassed. The thrust control system is intended to function in environments too severe for mechanical controls

    Multi-spectral window radiance observations of Cirrus from satellite and aircraft, November 2, 1986 Project FIRE

    Get PDF
    High resolution infrared radiance spectra achieved from the NASA ER2 airborne HIS experiment are used to analyze the spectral emissivity properties of cirrus clouds within the 8 to 12 micron atmospheric window region. Observations show that the cirrus emissivity generally decreases with increasing wavenumber (i.e., decreasing wavelength) within this band. A very abrupt decrease in emissivity (increase in brightness temperature) exists between 930/cm (10.8 microns) and 1000/cm (10.0 microns), the magnitude of the change being associated with the cirrus optical thickness as observed by lidar. The HIS observations are consistent with theoretical calculations of the spectral absorption coefficient for ice. The HIS observations imply that cirrus clouds can be detected unambiguously from the difference in brightness temperatures observed within the 8.2 and 11.0 micron window regions of the HIRS sounding radiometer flying on the operational NOAA satellites. This ability is demonstrated using simultaneous 25 km resolution HIRS observations and 1 km resolution AVHRR imagery achieved from the NOAA-9 satellite. Finally, the cirrus cloud location estimates combined with the 6.7 micron channel moisture imagery portray the boundaries of the ice/vapor phase of the upper troposphere moisture. This phase distinction is crucial for infrared radiative transfer considerations for weather and climate models, since upper tropospheric water vapor has little effect on the Earth's outgoing radiation whereas cirrus clouds have a very large attenuating effect

    Correlation and Statistical Characteristics of Turbulence Fronts in the Wakes of Hypervelocity Bodies

    Get PDF
    Data on statistical wake turbulence of the far wake of sphere and cone models with velocities from 9,800 to 21,500 feet/second and range pressures from 50 to 120 mm Hg. are presented and analyzed. The measurement technique used is that of observing the turbulence edge position of the wake on schlieren films. The measured parameters are the wake width; edge roughness; auto-correlation function; microscale; e-fold; integral, and average eddy lengths; wake dissipation parameter; Kolmogoroff and energy containing wave number parameters; Lagrangian integral time scale parameter; Strouhal number; cross-correlation function; and wake edge velocity. The results of these measurements are compared with other investigators, as well as other methods of observing the character of the turbulence of the far wake. The present data shows reasonable agreement with that of other investigators using the same observation technique. However, there is a lack of agreement between the results from some of the methods of observation and/or measurement techniques. The severest criticism of the present method of observation is found to be the need for a meridional plane view correction factor along with the lack of a direct relation of the wake edge position to the internal turbulence structure

    Challenges in the development of the orbiter radiator system

    Get PDF
    Major technical challenges which were met in the design and development of the Space Shuttle Orbiter Radiator System are discussed. This system rejects up to 30 kW of waste heat from eight individual radiators having a combined surface area of 175 sq m. The radiators, which are deployable, are mounted on the inside of the payload bay doors for protection from aerodynamic heating during ascent and re-entry. While in orbit the payload bay doors are opened to expose the radiators for operation. An R21 coolant loop accumulates waste heat from various components in the Orbiter and delivers the heat to the radiators for rejection to space. Specific challenges included high acoustically induced loads during lift-off, severe radiating area constraints, demanding heat load control requirements, and long life goals. Details of major design and analysis efforts are discussed. The success of the developed hardware in satisfying mission objectives showed how well the design challenge was met

    Microwave soil moisture measurements and analysis

    Get PDF
    An effort to develop a model that simulates the distribution of water content and of temperature in bare soil is documented. The field experimental set up designed to acquire the data to test this model is described. The microwave signature acquisition system (MSAS) field measurements acquired in Colby, Kansas during the summer of 1978 are pesented
    • …
    corecore