
LOAN COPY: RETURN TO

KIRTLAND AFB. N M E X
AFWL (WLIL-2)

HAND-PRINTED INPUT
FOR ON-LINE SYSTEMS

by M . I. Rernstein and H. L. Howell

Prepared by
SYSTEM DEVELOPMENT CORPORATION
Santa Monica, Calif.
for Electronics Research Center

N A T I O N A L A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N W A S H I N G T O N , D . C. M A R C H 1 9 6 9

https://ntrs.nasa.gov/search.jsp?R=19690012165 2020-03-12T03:56:00+00:00Z

NASA CR-1284
TECH LIBRARY KAFB, NY

HAND-PRINTED INPUT FOR ON-LINE SYSTEMS

By M. I. Bernstein and H. L. Howell

Distribution of th i s repor t is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepared under Contract No. NAS 12-526 by
SYSTEM DEVELOPMENT CORPORATION

Santa Monica, Calif.

for Electronics Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific ond Technical Information
Springfield, Virginio 22151 - CFSTI price $3.00

ABSTRACT

This document describes a program for recognizing
hand-printed information in real time, which provides
on-line computer users with a means of inputting
two-dimensional information as simply as writing with
pen and paper. The program operates under the Time-
Sharing System on the &-32 computer at SDC, and uses
a RAND Tablet for input and a CRT display (rear-
projected on the tablet) for output. Each user of the
program builds a unique character dictionary, based
on samples of his own input characters. For each user,
the program currently recognizes about 100 different
characters, which are chosen from a larger alphabet
by the individual user. This document describes how
the recognition program interfaces with the Time-
Sharing System; what functions the program performs in
recognizing hand-drawn input; and how the character
dictionary is constructed and tested. The report
concludes by suggesting that the character recognizer
will realize its greatest potential by being applied
to problems that require free-form (rather than
linear keyboard) input.

iii

FOREWORD

Dirtribution of thio report is provided in the intereet of information exchange
and should not be construed a8 endorsement by NASA of the material presented.
Responsibility for the contents reridtr with the organization that prepsred it.

The work reported herein was monitored by:

Mr. David Kipping
Technical Monitor

Electronics Rerearch Center
575 Technology Square
Cambridge, Masrachusetts 02139

NAS 12-526

iv

TABLE OF CONTENTS

PAGE SECTION

1 .
2 .
3 .
3.1
3.2
3.3
3.4

4 .
4.1
4.2
4.3

5 .
6 .

1 .
2 .
3 .
4 .
5 .
5.1
5.2

6 .
6.1
6.2
6.3
6.4
6.5
6.6

DATA FLOW AND CONTROL UNDER TSS 1
THE RECOGNIZER PROGRAM . 3

Data Input Requirements . 3
Primary (Path) Feature Extraction 5
Shape Feature Extraction . 7

Relationships . 8

THE DICTIONARY . 10

Multi-Stroke .Characters and Inter-Stroke

Dictionary Construction . 10
User Dictionary Manipulation 12
Dictionary Testing . 15

CONCLUSIONS AND RECOMMENDATIONS 15

BIBLIOGRAPHY . 17

TABLE OF CONTENTS . APPENDIX

INTRODUCTION . 2 1

ANALYSIS . 21

NOTATION . 22

. TABLES 24

PROGRAM DESCRIPTION . 25

Data Flow . 25

DESCRIPTION OF PROGRAM SEGMENTS 31

ResponseTime . 30

GRID Subroutine . 31

TEST Subroutine . 32
SAMPLE Subroutine . 32

ANALYZER Subroutine . 40
STR@KE Subroutine . 42
BOTH Subroutine . 44

V

.

TABLE OF CONTENTS . APPENDIX (Continued)
SECTION PAGE .
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.16.1
6.16.2
6.16.3
6.16.4
6.16.5
6.16.5.1
6.16.5.2
6.16.5.3
6.16.5.4
6.16.5.5

INFLEX Subroutines .
XgVER Subroutine .
MINPTS Subroutine .
QUAD. APUT and DIST .
DEFINE . Subroutine .
SEARCHD Subroutine .
SEARCHF Subroutine .
SEARCHS Subroutine .
HED8 and DIRQ Subroutines .
PURGE. MERGE and @PTIMIZE SUBROUTINES
PURGE Subroutine .
COMPACT Subroutine .
MERGE Subroutine .
Optimization .
Optimize Subroutine .
DTREE Subroutine .
ADDGR@UP Subroutine .
GTREE Subroutine .
GCHECK Subroutine .
RELINK Subroutine.

44
48
48
51
51
51
56
56
56
56
61
61
6 4
6 4
66
66
70
72
72
7 5

ADDENDUM A: GLOSSARY OF MNEMONICS AND ABBREVIATIONS 78
ADDENDUM B: EXAMPLE OF OPTIMIZE . 85

ADDENDUM C: NEW TECHNOLOGY . 108

LIST OF FIGURES

FIGURE

1 .
2 .
3 .
4 .
5 .
6 .

1 .
2 .
3 .
4 .
5 .

Examples of Stages of Input Processing 4
Sample Data Points for Hand-Drawn tl8ll 9
Sample Data Points for Hand-Drawn 11311 9
Value Assignments for Eight Quantized Directions 9

Dictionary Construction . 13

Position Relationships Between Strokes of a Multi-
Stroke Character . 11

LIST OF FIGURES . APPENDIX
Character Recognizer Routine Relationships 26

GRID Subroutine . 3 4
Display for SAMPLE Program 35
Character Subset Keyboards 36

Storage Map for Display Buffer (DB) and Input Memory Buffer (IMB) 33

vi

LIST OF FIGURES . APPENDIX (Continued)
PAGE .

6 .
7 . .
8 .
9 .

10 .
11 .
12 .
13 .
14 .
15 .
16 .
17 .
18 .
19 .
20 .
21 .
22 .
23 .
24 .
25 .
26 .
27 .
28 .
29 .
30 .
31 .
32 .
33 .
34 .
35 .
B.1 .
B-2 .
B-3 .
B-4 .
B-5 .
B-6 .
B-7 .
B.8 .
B-9 .
B-10 .
B- 11
B-12 .
B- 13 .
B.14 .
B-15 .
B- 16
B-17 .
B-18 .
B-19 .
B- 20
8-21 .
B- 22

SAMPLE Subroutine . 37
Display Buffer Allocation for SAMPLE 38
Display Buffer Allocation for TEST 38
TEST Subroutine . 39
ANALYZER Subroutine . 41
STROKE Subroutine . 43
B@TH Subroutine . 45
Segment End-Point Areas . 46
Segment Feature Areas . 46
INFLEX Subroutine . 47
X@VER Subroutine . 49 .
MINPTS Subroutine . 50
QUAD (Ax. Ay). APUT (x). and DIST (i. j) Subroutines 52
DEFINE Subroutine . 53
SEARCHD Subroutine . 54
Examples of Overlap Computation 55
SFARCHF Subroutine . 58
Character Definition Dictionary 57
SFARCHS Subroutine . 58
HED8 (Oxy) Subroutine Flow Chart and Table 59
DIRQ (AXY) Subroutine Flow Chart and Table 60
PURGE Subroutine . 62
C@MF'ACT Subroutine . 63
MERGE Subroutine . 65
@PTIMIZE Subroutine . 67
DTREE Subroutine . 68
ADDGR@UP Subroutine . 71
GTREE Subroutine . 73
GCHECK Subroutine . 74
RELINK Subroutine . 76
Sample Dictionary Before and After Optimization 86
Step 1 of Optimization . 87
Step 2 o f Optimization . 88
Step 3 of Optimization . 89
Step 4 of Optimization . 90
Step 5 of Optimization . 91
Step 6 of Optimization . 92
Step 7 of Optimization . 93
Step 8 of Optimization . 94
Step 9 of Optimization . 95
Step 10 of Optimization . 96
Step 11 of Optimization . 97
Step 12 of Optimization . 98
Step 13 of Optimization . 99
Step 14 of Optimization . 100
Step 15 of Optimization . 101
Step 16 of Optimization . 102
Step 17 of Optimization . 103
Step 18 of Optimization . 104
Step 19 of Optimization . 105
Step 20 of Optimization . 106
Final Result of Optimization 107

vi i

1. INTRODUCTION
For the past f e w years, we'have been working a t the task of producing a program
for the on-l ine recogni t ion of hand-printed characters i n real time. Our main
goal has been to provide the on-line computer user with a more f l ex ib l e i npu t
mechanism than now exists. Among the primary aims of research was t h e a b i l i t y
to recognize a t least 100 different characters (chosen from a la rger a lphabet)
f o r a given individual. A descr ipt ion of our e a r l i e r e f f o r t s , as wel l as o ther
work i n t h i s field, can be found i n references 1 through 9 in the b ib l iography.

The method described here is un ive r sa l i n t he s ense that it appl ies the same
genera l ana ly t ica l t echnique to a l l inputs . It i s not universal in the sense
t h a t it may not recognize inputs provided by one o the r t han t he o r ig ina l d i c -
t i ona ry bu i lde r . Thus, t o o b t a i n optimum performance, each individual user i s
requi red to bu i ld a dict ionary based upon h i s own inputs . The system was
designed with this faci l i ty , and dict ionary bui lding has been made as pa in less
as possible . Though we do not c la im that th i s i s the u l t imate in on- l ine
character recognition, we do f e e l t h a t we have come close to achieving our
principal objective--namely a program t h a t w i l l recognize 100 charac te rs for a
given individual.

The program we have developed operates under the Time-sharing System on the
AN/FSQ-32 computer a t SDC. The hardware required for our recognition system,
i n a d d i t i o n t o a reasonably fast d i g i t a l computer, includes a RAND Tablet o r
i t s equivalent for input and a CRT d isp lay for ou tput . We have taken advantage
of the fac t tha t the Grafacon l O l O A (the commercially available version of the
RAND Table t) was por ted for rear projection, and have bu i l t t he d i sp l ay and
t a b l e t around a projection system %hat provides a common input-viewing surface
[lo]. I n use, the tablet behaves much l i k e pen and paper. This l a t t e r f e a t u r e
i s not essent ia l to the t echnique , bu t we f e e l that it a i d s m a t e r i a l l y i n
achieving the close coupling desired i n i n t e r a c t i v e man-machine systems.

2. DATA F'LOW AND CONTROL UNDER TSS

The hardware f o r t h e SM: Time-sharing System (TSS) cons i s t s of two computers,
a PDP-1 and the Q-32, coupled by a core s torage (cal led Input Memory) common
t o b o t h . A l l interact ive devices , including o w Graphic Tablet Display Console,
are connected t o t h e Q-32 v i a t he PDP-1, which se rves so l e ly as an 1/0 pro-
cessor for these devices . Inputs f rom the tablet are processed by the PDP-1
CPU on an in te r rupt basis. Output t o t h e d i s p l a y i s handled through an inde-
pendent control ler a t tached direct ly to the Input Memory. Immediate feedback
i s thus provided between the tablet and display so t h a t t h e u s e r may see h i s
ac t ions as they occur, by having the PDP-1 s to re t he p rocessed t ab l e t i npu t s
in to Input Memory in the a rea reserved as the d i sp lay ' s buf fer .

There are three kinds of feedback provided by the tablet in terface program i n
t h e PDP-1. The f i r s t i s negative--no feedback a t a l l , i nd ica t ing t ha t i npu t
w i l l not be accepted a t that time. Next, there i s feedback i n t h e form of a

single point output, updated every 30 msec., i nd ica t ing that input 'is allowed.
The point on the d i sp lay w i l l represent the present pos i t ion of the s ty lus on
the t a b l e t as long a s t he t i p swi t ch in the s t y l u s (which we c a l l pen switch)
i s open. When the pen switch i s c losed by p ress ing the s ty lus on the t a b l e t
surface, the sampling interval to the F'DP-1 i s decreased to 4 msec. 'The PDP-1
then s tores the track or path of the pen i n t h e I n p u t Memory d isp lay buf fer
a f t e r f irst smoothing and f i l t e r ing ou t redundant po in ts (these func t ions are
explained in detail below). To the user it appears as though "ink" were flow-
ing from the t i p of the s ty lus .

The control for al lowing input resides with the user s program (i n this case
the character recogni t ion program) in the Q-32. Communication between the
u s e r ' s program and the PDP-1 funct ions i s handled through TSS's Dispatcher,
using .reserved words i n the Input Memory d isp lay buf fer . From the Q-32, the
user-- in addi t ion to a l lowing or disal lowing input (by specifying a delay time
between % sec and 8 s e c a f t e r a t l e a s t one tab le t input has occur red) - -a l so
informs the PDP-1 when t o n o t i f y the Q-32 system tha t input i s f in i shed and i s
waiting to be processed by the user's program. As a defaul t condi t ion, the
t ime delay i s ignored by the PDP-1 program i f the user has f i l l ed the a l l o t t e d
a r e a i n the Input Memory d i sp lay bu f fe r t o capac i ty .

All in te rac t ive user programs running under TSS are scheduled on a round robin
basis. The use r ' s program i n t h e Q-32 i s sues a request for tablet input through
the system's Dispatcher with a Wait i n o r d e r t o remain synchronized with and i n
cont ro l o f the user ' s ac t ions a t the console. When the PDP-1 informs the Q-32
system that tablet inputs are ready, the user program tha t requested the input
(only one can do so, because the t ab le t i s acquired as a pr ivate device by that
program) i s taken from Wait s t a t u s and is scheduled. The inputs from t h e t a b l e t
a r e t hen d i r ec t ly ava i l ab le on a word-for-word basis from Input Memory t o t h e
user program. In addi t ion to the actual x ,y coordinates that const i tute the
smoothed and f i l t e r ed " ink" the user sees on his display, the PDP-1 has kept
count of the number of points re jected for each accepted point in the s t roke
o r l i n e . This data is stored along w i t h the x, y data in the Input Memory
display buffer. Because the user may draw more than one s t roke or l ine , the
beginning of each i s uniquely marked.

The Q-32 processes the input from the tablet as determined by what actions were
v a l i d a t the time. The input may be in te rpre ted as a "button" push o r as a
s t r o k e i n a character , or they may be re jec ted as i n v a l i d f o r the ex i s t ing
s i tua t ion . During that Wne, the user w i l l get no tablet feedback, thus
informaing him tha t input w i l l not be accepted. Upon completion of processing,
the display buffer i s appropriately updated, the Dispatcher is cal led request-
i ng t ab l e t i npu t , r e - in s t i t u t ing the user's feedback, and the Q-32 user program
re-en ters Wait s t a t u s .

This, in essence, descr ibes the data flow and communication c a p a b i l i t i e s a v a i l -
able for using the interactive Graphic Tablet Display Console within SDC's

2

Q-32 Time-sharing System. Two control programs, SAMPLJ3, used for dictimary
building, and TEST, used to test the dictionary in a simulated environment, use
the communication and control features of the system as described above. The
basic difference between them is the interpretation of the input data; this will
become clear when they are discussed below.

3 . THE RECOGNIZER PROGRAM

3 -1 RATA INPUT REQUIREMENTS
The processing programs involved in the character recognizer do not deal
directly with raw tablet data. Rather, they expect data that has been pre-
processed in a particular way to eliminate redundant points, provide as smooth
a path as poss'ible, and yet retain the appropriate level of detail to permit
extraction of pertinent features.

The f'unctions of smoothing, filtering and keeping count of the rejected points
has been relegated to the PDP-1 tablet interface program for reasons of effi-
ciency in both time and space. Performing these tasks as each point interrupts
the PDP-1 does not impose an undue burden on that processor and saves a great
deal of buffer space, thus extending the "ink" supply.

Smoothing is required for the very simple reason that the raw data track from
the tablet contains certain irregularities due to the discrete nature of the
grid, the view angle of the stylus tip (which varies as the pen is rotated in
the hand while writing) and other vagaries of electronics such as poor signal-
to-noise ratio on the low-order bits of the coordinates, particularly the y
coordinate. figure 1 illustrates rather clearly the value of smoothing when
column "A" is compared with column "B" . Columns "C" and "D" of the same figure
show the reduction in the amount of data received versus that output by
filtering using a filter constant of 3 . In most cases, it is obvious that the
smoothed, filtered data provides the more desirable inputs for processing. "he
numerical data representing column "Dl' of Figure 1 (along with the associated
point counts) are what the character recognition program processes.

The smoothing algorithm is a rather simple one. An eight-point moving average
of the raw data generates one smoothed data point. To start the process, the
first input point is replicated eight times. An alternative choice would have
been to wait until eight points had been input. The former is logically
simpler, and (because the pen is moving slowly at the beginning of a stroke),
no obvious bias has been noticed because of this choice. Smoothing may be
turned off by setting the appropriate control word in the display buffer.

Filtering and counting the redundant points is another simple process. It is
applied after the raw data has been smoothed. The filter constant can be set
Into one of the display buffer control words, and can have a value between 0
and 6 3 . Zero means no filtering. (This is the way the ray data in Figure 1
was obtained.) By trial and error, we have settled on the value of 3 for the

3

RAW DATA

A. 8.

SMOOTHED DATA

C.
FILTERED RAW DATA SMOOTHED A N D

D.

FILTERED DATA

FIGURE 1. EXAMPLES OF STAGES OF INPUT PROCESSING

4

filtering constant as one suitable for drawing reasonably small characters
while minimizing the amount of input data to be processed.

The process of filtering itself compares the absolute value of the differences
between the last accepted point and the current point (output by the smoother
if it is on or read directly from the tablet if it is off). .If either I A x [
or 1 Ay 1 is greater than or equal to the filter constant, the point is accepted;
otherwise it is rejected and the point count of the last accepted point is
incremented. These point counts are used in (and are critical to) corner
detection as a measure of the stylus velocity along the path. The filtering
process is started with the first input pint of the stroke. This point is
also uniquely marked to identify it as the beginning of a stroke. A l l sub-
sequent processing of the tablet inputs takes place in the Q-32.

PRIMARY (PATH) FEATURE EXTRACTION

The first processing of the stroke information extracts what we shall call
primary or path features. At present these consist of corners, inflection
points, intersections within the stroke, and a corrective procedure for re-
moving small but bothersome "hooks" that occur at the beginning or end of the
stroke. Although all of this processing could be done in one pass of the
stroke data, the program would be extremely complex. Some of the processes
are done in parallel; however, we shall consider them serially for clarity of
exposition.

The data received by the routine is an array of ordered triples that are made
up of the x-coordinate, the y-coordinate and the rejected pint count. The
first step i s to convert the coordinate pints into discrete headings (one of
thirty-two), thus making the stroke psition-independent .
.It

Values assigned to the 32 directions can be thought of either as simple
integers having the value 0 through 31, or as signed two's complement four-bit
fractions. Thus one can think of the half circle beginning at the zero direc-
tion and rotating clockwise as increasing in value by increments of 1/16, and
decreasing in the counter-clockwise direction by -1/16. In order to remain
consistant with two's complement arithmetic, the value assigned to the direc-
tion half way around from 0 equals -1. This method permits differencing the
heading using the arithmetic of most computers directly and has the advantage
that no difference can exceed 1800 (-1) and that the sign of the difference
indicates the direction of the path's rotation or curvature. The differences
themselves can be thought of either as integers or fractions, since the con-
version is a simple scaling by a power of two. We shall be consistent here
and treat all things concerning headings and differences as fractions.

5

Simultaneously, the minimum rectangle surrounding the stroke is computed. The
absolute value of the difference of the headings formed by the first th ree and
t he l a s t t h ree po in t s o f t he s t roke (i f the s t roke a r ea is l a r g e enough t o
qua l i fy) i s t e s t ed aga ins t a ''hook" threshold. If the th reshold i s exceeded
(the current value i s 5/16) the offending point i s removed from the stroke,
thus e l iminat ing the "hook".

We have t r i e d s e v e r a l schemes for de tec t ing corners . A l l have used bo th l oca l
geometry and velocity. Our best est imate of veloci ty i s the r e j ec t ed po in t
count suppl ied by the f i l ter ing program, which i s actual ly the inverse of the
veloci ty , s l ight ly modif ied by the smoothing a lgori thm. In order to examine
t h e l o c a l geometry of the s t roke, adjacent headings are differenced, and each
d i f fe rence i s associated with the po in t common t o t h e two headings. Thus th ree
p o i n t s i n a straight l i n e would generate a zero d i f fe rence for the cen ter
p i n t , r e g a r d l e s s of direct ion. In order to determine approximate angular
change without regard to direct ion of rotat ion, one need only look a t t h e
&solute value of the difference. In what follows we shall use the notat ion
Ah to denote this di f ference, and 1 A h 1 t o r e f e r to i t s absolute value.

The present corner detector marks a point as a corner i f e i t h e r i t s] A h 1 is
greater than 11/16 o r i f I hhi+Ahi+i I (that is, the sum of the current and next
Ah) i s grea te r than 13/16 without examining the local velocity (point count).
Otherwise, a point i s marked as a corner if i t s point count i s grea te r than or
equa l t o 8, or the sum of i t s p i n t count and i ts predecessor 's p i n t count i s
grea te r than o r equal to 1 4 and t h i s l a t t e r sum is a l s o a t least s ix t imes
grea te r than the minimum point count two away (before o r after). There are
some involved complexi t ies for those la t ter cases that determine which of the
two candidates i s ac tua l ly marked as a corner, plus some poin t re loca t ion that
i s done when t h e f i l t e r has "rounded" a corner , bu t these a re no t appropr ia te
for th i s d i scuss ion . The parameters used i n t h e above t e s t s were a r r ived a t
empir ical ly af ter examining a grea t many samples. Unfortunately, those samples
did not come from a l a rge number of people, but they have worked successfu l ly
f o r a va r i ed s e t , i nc lud ing bo th l e f t - and right-handed people.

It should be noted here that the marking of a point as a corner divides the
s t roke i n to s epa ra t e pa r t s from which the shape features and in f l ec t ion po in t s
a r e ex t r ac t ed s epa ra t e ly . If no corners are found in a s t roke , t he en t i r e
s t roke i s processed as a uni t for ex t rac t ion of shape fea tures and in f lec t ion
points .

Inf lect ion points are determined using the same heading differences described
above. This i s done by..summing the Ah's f o r t h e e n t i r e s t r o k e and noting when
the absolute value of the sum exceeds 5/16. Only a f t e r such an occurrence can
an inf lec t ion po in t occur . This limit el imina tes spur ious in f lec t ions in t ro-
duced by minor wiggles. After the above threshold i s exceeded, the maximum
and minimum values of the sum are noted i f the difference between successive
pa i r s o f minima and maxima i s grea te r than 3/8. If so, an in f l ec t ion po in t

6

has occurred either at or between the pair. "he usual case is that the event
occurred at the minimum or maximum, but when they are joined by a straight
segnent (a series of Ah's equal to zero), the inflection point is taken midway
in this segment.

We have not solved the general problem of finding path intersections efficiently
at this writing. Instead, we look at the sums generated by the inflection
point search and determine if any part of the path qualifies as a loop. Then,
if and only if no inflection point was found in the part under question, we
perform tests within the general area of the stroke to determine if closure has
occurred. We hope that a general solution to the problem of detecting path
intersections will be more useful in conjunction with shape feature extraction
in improving.discrimination among strokes that now prove somewhat troublesome
to handle as special cases.

3 - 3 SHAPE FEATURE EXTRACTION
Over the past several years, we have tried various methods for extracting fea-
tures describing the "shape1' or topology (using the term loosely) of a stroke.
They can be divided into three general classes: local minima and maxima, area
traversal, and curvature measurements. Each has its merits and shortcomings.
When the shortcomings outweighed the merits (as was the case with the local
minima-maxima method), the effort was discarded from f'urther consideration as
a basic method, though we attempted to learn from such failures and retain
some features of the approach that might lead to improvements of other attempts
with other techniques.

The area feature extractor, which has already been documented in earlier reports,
is a case in point. Though the technique as a whole was not entirely satis-
factory because it was sensitive to minor variations in the input that dras-
tically changed the generated description (such as lengthening or shortening
the tail on the input character 'la"), it had characteristics we wished to re-
tain in future tries. For instance, it inherently retained the basic geometric
relationsips among the various parts of the stroke, and was insensitive to
minor variations in the amount of curvature in the various parts of the stroke.
In fact, as long as "faults" such as hooks did not generate corners or inflec-
tion points, they did not perturb the results at all.

On the other hand, the curvature feature was insensitive to lengthening or
shortening ''tails", but was always sensitive to minor variations in curvature
if the variation occurred at the separation between two classes of features,
such as a "curve'' and a ''cup. I' We had solved the problem of retaining geometric
relationsips between the features by adding a feature that described the rela-
tionship of the present feature to the collection of its predecessors. The
details of this extractor appeared in a prior report.

7

The most recent feature extractor is an amalgamation of area and curvature
techniques. The stroke is segmented into smaller parts at corners and (when we
solve the processing problem) at intersections, but not at inflection points--as
was necessary in the curvature measurement method. Each part is then ''described"
using the area feature method with some minor changes, and the whole is tied
together. This is done by geometrically relating the rectangles used to gener-
ate the description for the parts in the same way that the features were
related in the curvature extractor. The variations to this technique amount to
eliminating the central diamond-shaped area if an inflection point is included
in the stroke part, and marking the inflection point's occurrence instead; if
the part or stroke is simply a straight line, the generated feature string
contains only the end point areas. This latter case is detected when the Ah's
are summed while looking for inflection points, The same procedure permits us
to detect loops that occur at the beginning and/or end of a stroke, and to
treat them separately. To clarify the above, we present two examples: a
hand-drawn eight, and a hand-drawn three.

Figure 2 shows the data pints for the input character (the "g") and indicates
that an inflection point was found (the circled point), plus the area divisions
of the minimum rectangle surrounding the stroke. The feature string produced by
following the path from area to area is 14512351. The "I" indicates that an
inflection point was encountered in area 5; however, since it was, all refer-
ences to area 5 are delected, thus producing the feature string 141231. The
deletion of area 5 was decided upon after many samples of strokes were analyzed
for variability, and it was discovered that almost all of the differences were
in the area in which the inflection was placed, plus the relative psition of
area 5 with respect to the others. Although not shown in this example, when
the deletion of area 5 leaves two adjacent features with the same area number,
one of these is also deleted. The overall effect is a decrease in undesirable
discrimination, at the cost of extra processing.

The hand-drawn three shown in Figure 3 illustrates the case where the stroke has
been divided into two parts by the discovery of a corner (the point surrounded
by a square). The rectangle surrounding each part is computed and subdivided
as shown, and the generated feature string is 4123C4123G4. The "C" indicates
that a corner occurred between the two parts; the "G4" at the end shows the
following geometric relationship between the two rectangles: the second part
is immediately below the first. The headings or directions used for geometric
relationships between surrounding rectangles is quantized to one of eight as
shown in Figure 4. The overall effect of this approach is reasonably consis-
tent shape description of parts of a stroke that is insensitive to minor varia-
tions in curvature, while retaining the overall required discrimination and
descriptive content.

3 -4 MULTI-STROKE CHARACTERS AND INTER-STROKE RELATIONSHIPS
Being able to extract the feature content of each stroke only solves half of
the problem for multi-stroke characters. In order not to impose restrictions

8

FIGURE 2: SAMPLE DATA POINTS
FOR HAND-DRAWN "8"

FIGURE 3: SAMPLE DATA POINTS
FOR HAND-DRAWN "3"

FIGURE 4: VALUE ASSIGNMENTS FOR
EIGHT QUANTIZED DIRECTIONS

9

I l h

or constraints upon the user concerning character separation and to make the
recognizer truly position-independent, multi-stroke characters must be dealt
with as a unit. Therefore, we require some additional information about the
relationships of strokes that make up the character. The method used is the
same as that used to describe the geometrical relationships between the parts
within a stroke. Each successor stroke is related to the collection of its
predecessors by computing the relationship of the appropriate minimum surround-
ing rectangles. A stroke is considered coincident with its predecessor(s) if
the rectangle centers are within a limit of one another, as computed from the
larger of the two. If the coincidence test fails, the center-to-center
direction is computed; on the basis of that direction, the appropriate edges
are compared for nearness (based upon the same computed limit) or overlap. If
this test is successful, the strokes are considered near (indicated by "N");
otherwise they are far (indicated by "F") from one another. The position
relation is composed of the result of these tests plus the center-to-center
direction in the case of "near" and "far'' rectangles. In Figure 5 , the posi-
tional relation is indicated by.the appropriate letter followed by an arrow
where required.

4. THE DICTIONARY

4.1 DICTIONARY CONSTRUCTION
As stated above, each user should build a dictionary based upon samples of his
own input characters. This is presently done using the control program called
SAMPLE. In the dictionary-building mode, only one character at a time is
input, though it may be constructed of as many as 12 strokes. When the user
completes his input (this is indicated by pausing a predetermined amount of
time), the strokes are individually analyzed, that is, a feature string is
produced for each; if the input character is composed of more than one stroke,
the positional relationship between each subsequent stroke and the collection
of all of its predecessors is computed.

The dictionary--as it exists--is then searched, stroke by stroke, for a match-
ing description. If a complete match is found for the input, the associated
output character replaces the user's input on the display, thus informing him
that the input was recognized. If no match, or an incanplete match is made,
the user is so informed. He then defines the input by appropriately indica-
ting the output character he wanted to associate with the input; alternatively,
he may erase the input and draw another character. By defining the input, the
user causes the program to add the missing stroke information to the dictionary
with the output character appended.

In addition to the feature information, the dictionary contains a recognition
count, set, to zero when a new definition is added. Each time a match is made
for a definition, its recognition count is incremented by one.

10

STROKE

SURROUNDING
RECTANGLE

CENTER

COINCIDENCE
TEST AREA

I

a. FIRST STROKE
OF A N "A"

SECOND
/STROKE

STROKE

SURROUNDING
RECTANGLE

CENTER

COINCIDENCE
TEST AREA

b. SECOND STROKE ADDED c. THIRD STROKE ADDED

S : S , = N - 2
s3: s, + s 2 = c

d. GENERATED POSITION RELATIONSHIPS FOR "A"

NEARNESS
TEST AREA

1
I

I SECOND
I STROKE

I
I
I

I
I

e. FIRST STROKE
f. SECOND STROKE ADDED

OF A N "H" S 2 : 5, = F -
s . s + s 2 = c 3' 1

h. GENERATED POSITION RELATIONSHIPS FOR "H"

STROKES

-THIRD STROKE

RECTANGLE
SURROUNDING
FIRST 8 SECOND

THIRD STROKE

9. THIRD STROKE ADDED

FIGURE 5. POSITION RELATIONSHIPS BETWEEN STROKES OF A MULTI-STROKE CHARACTER

The dictionary minimizes both space and search time, while retaining the essen-
tial stroke relation information. This is done by constructing the dictionary
as a tree or set of trees, in which only the legitimate successor strokes are
linked to predecessors. Figure 6 illustrates the dictionary-building process.
In Figure 6, the feature strings generated for the strokes are represented by
drawn shapes, rather than their actual numerical representation. The dotted
arrows indicate the paths that the search routine is allowed to follow.
Figure 6f illustrates the parsimony that this type of dictionary allows,
namely, it contains descriptions of 11 strokes and 9 complete characters with-
out ambiguity.

As constructed by the user, the dictionary contains not only the input char-
acter descriptions and definitions, it also contains implicitly the separation
information required if the user is to be permitted to input more than one
character at a time. This factor is essential for two reasons: First, the
user can input a natural grouping at one time; second, and even more important,
he is not constrained to print his input at some predetermined bounded area.

Errors or ambiguities can and do occur, because some characters are proper
subsets of others, and legitimate character pairs appear to the program as
single characters. To resolve this problem, the user must revert to single
character input.

4.2 USER DICTIONARY MANIPULATION
In addition to the obvious abilities to save and restore a dictionary under
user control, the current program permits three other capabilities: purging,
merging, and optimizing multi-stroke character definitions.

Purging permits the user to delete unwanted definitions from the dictionary in
one of two ways. He may delete all definitions for a chosen output character,
or he may purge all definitions whose recognition count is below a threshold
of his choosing. There is no restriction on the number of times the user may
purge a dictionary.

The purging is done as a two-step process that is the same for either kind of
purge-threshold or character. During the first step, every entry in the
dictionary is examined in its logical sequence by beginning with the first
dictionary entry of the first strokes and following all links (explicit and
implied) to their terminal node or leaf. Every entry that meets the purging
requirement is marked as an "intermediate undefined" entry (replacing the
existing character definition entry).

On the second step, a new dictionary is built from only those entries that
terminate at a leaf with a legitimate output character. A l l chains of entries
that are all "intermediate undefined" are deleted, as long as none are cross-
connected to legitimate output characters. Conceptually, the process is
straightforward, but because the dictionary is not constructed using the stan-
dard technique of an available space list, the actual manipulations become
quite complex.

12

c-

a. U a r &gir*Dictionary by Droving and Dafininp a "1"

-1 """" 4-

"""" j T 1
b. Lhar D r a and Dafinn a "+"

FIGURE 6. DICTIONARY CONSTRUCTION

13

. _. .

Merging two dictionaries is a straightforward process. The dictionary that is
to be added is treated as though the input characters were input one at a time,
as in dictionary construction. Each complete entry (sequence of strokes) is
taken one at a time from the incoming dictionary and searched for in the
resident dictionary. If a complete match is found, no new information is
added to the resident dictionary, but the recognition count plus one of the
"new" characters is added to the resident definition. When a conflict arises--
that is, when the feature strings from both dictionaries agree but the output
characters differ--the user must make a choice among three alternatives: (1)
He may choose to use the resident dictionary definition; (2) the definition
from the incoming dictionary to replace the resident definition, or (3) neither.
If he chooses neither, the resident definition is set to "intermediate
undefined". If any instance of this latter occurs, the merge program calls the
second step of the purge routine to clean up the dictionary.

The optimization process is a way of recovering space in the dictionary by
cross-linking definitions of multi-stroke characters in a way that eliminates
redundant successor stroke chains that are exactly alike. This process cannot
easily be done during dictionary construction without adding a great deal more
structure to the present form of the dictionary. The price for doing so would
not only be additional space, but additional time during searching.

Optimization is done, in a sense, by turning the dictionary inside out. That
is, the dictionary must be examined in reverse order: the last stroke in a
chain and its attached definition are examined first, and all last strokes at
the same level are searched for an exact match. If such a match is found,
obviously one of the entries is redundant and may be removed by linking the two
predecessors to the same successor. Before it is actually removed, the chain
is searched backwards to determine if the redundancy continues. If such is the
case, an entire chain may be removed, as long as no definitions are destroyed
in the process and no ambiguities are created.

The process continues through each level of successor strokes until no f'urther
redundancies can be removed. In actual practice, the dictionary is not turned
inside out, but rather it is searched in a forward direction and the entries
grouped into classes which have the same number of strokes terminating in a
leaf. These groups are then processed by looking first for matching defini-
tions and then for matching feature strings. Because each definition is not
necessarily a simple chain, great care is taken that no destruction or mi-
guity is created; therefore, if any deletion is in the slightest way question-
able, no action is taken. In practice, the optimizer has worked exceedingly
well and actually created.new definitions by legitimately linking together
combinations that did not appear as samples during dictionary construction.

14

4.3 DICTIONARY TESTING
m e present implementation permits the user to test his character dictionary in
a simulated use mode under control of a routine called TEST. In order to better
approximate a usage environment, this routine allows the simple editing func-
tions of erasure (one or a group of characters), and single and multiple char-
acter replacement. It does not provide the ability to insert and delete,
primarily because it is not line- and character-space-oriented, but rather is
oriented toward unconstrained two-dimensional input. Thus the user is free to
draw any character in any position at any time. Because two-dimensional nota-
tions utilize character size as well as position (for reasons of aesthetics if
not meaning), the character output by the program matches the user's input in
both size and aspect ratio as closely as is physically possible.

When testing a dictionary, the user is not constrained to writing one character
at a time. He may input as long a character string as his "ink" supply will
permit. This is the only way in which the inherent character separation
mechanism of the dictionary can be tested. In this mode, the dictionary's
recognition counts are incremented for each successful match as they are in
the SAMF'LE routine.

At present, if recognition is not acceptable, we have no way of using the
test inputs for improving the dictionary. Though the recognition level may
appear acceptable in the dictionary-building mode, it appears that one's
actions when printing a single character differ from when he is printing a
string of characters. We are planning on changing the dictionary construction
program to accept a string of characters as well as single characters, and--in
addition--to permit retrieval of input from the testing routine for dicticnary
additions. This should speed dictionary construction as well as improve its
content.

5. CONCLUSIONS AND RECOMMENDATIONS
Given the appropriate input hardware, computer, and system interfaces, on-line
character recognition in real time is feasible. That it can be made operation-
ally successful when used by randomly chosen individuals has yet to be proven.
We have constructed dictionaries of a large number of characters (approximately
100) for individuals actively engaged on this project, and have had acceptably
high recognition rates. On the other hand, we have not specifically tested the
recognizer to ascertain its maximum level of attainment, nor have we tried to
have someone unfamiliar with the effort build and test a dictionary under test
conditions. Demonstrations of the system for a number of visitors have
indicated that some learning period is required before an individual becomes
thoroughly comfortable with the hardware, the program, and the variability of
the Time-sharing System's response time.

The economics of such a capability is another area that has only been cursorily
examined. It is obvious that the cost of the hardware alone precludes the use
of character recognition as a simple replacement for a keyboard console. This

15

is true from several points of view. First, the dollar costs of the two kinds
of terminals and their interface requirements make the keyboard console more
immediately attractive. Secondly, user experience and capability (given that
both devices are doing the same job) would make the keyboard console the more
desirable for most people. Therefore, the payoff (if one exists) of on-line
character recognition lies in those areas where input is either impossible or
extremely difficult to achieve through a keyboard console. This is the problem
area to which we have addressed ourselves, and this is the kind of capability
we believe we have attained with the present version of the recognizer. Namely,
for a given individual, we can provide a larger character set tailored to his
needs than that available through a keyboard--that is, the character set is
made up of his own choices from a much larger set. More importantly, for the
first time the position- and size-independent nature of the recognizer permits
a user to input complex two-dimensional notations of practically any disci-
pline for computer processing. This job cannot be done easily by any other
method. It is here that future activity must take place in the development
of systems and applications that require free-form, two-dimensional character
input.

Our recognizer is far from perfect, and we intend to continue improvements and
explorations into other techniques and approaches, as well as attempting to
make meaningful use of our current capability in the near future.

16

6. ~ BIBLIOGRAPHY
1. Bernstein, M.I. "Computer Recognition of On-Line Hand-Written Characters.''
R"3753-ARPA, The RAND Corporation, Santa Monica, California. October 1964.
2. . "An On-Line System for Utilizing Hand-Printed Input"
TM-3052. System Developnent Corporation, Santa Monica, California. July 1966.
3. . "A Method for Recognizing Hand-Printed Characters in
Real Time" Proceedings of the IEEE Pattern Recognition Workshop - 1966. (In
press).
4. . "An On-Line System for Utilizing Hand-Printed Input: A
Progress Report" T"3052/00l, System Developuent Corporation, Santa Monica,
California. December 1967.
5 . Brown, R. M. "On-Line Computer Recognition of Hand Printed Characters. 'I

IEEE Transactions on Electronic Computere. December 1964, pp. 750-752.
6. Dimond, T. L. "Devices for Reading Hand Written Characters. " Proceedings
of the Eastern Joint Computer Conference. December 1957, pp. 232-237.
7. Kuhl, F. "Classification and Recognition of Hand-Printed Characters. 'I

IEEE International Conference Record. Vol. 11, Part 4, 1963.
8. Teitleman, W. "New Methods for Real-Time Recognition of Hand-Drawn
Characters." Report No. 1015 Bolt Beranek and Newman, Cambridge, Massachusetts.
June 1963.
9. Nugent, W. R. and L . F. Buckland. l'Improved Text Editing Using Hand-
Drawn Cormnands and Data: A Technique for RAND Tablet and CRT Display. ''
Second Quarterly Progress Report. Inforonics, Boston, Massachusetts.
November 1966.
10. Gallenson, L. "A Graphic Tablet Display Console for use Under Time-
Sharing." Proceedings of the Fall Joint Computer Conference, Vol. 31.
Anaheim, California. November 1967.

17

APPENDIX

DETAILED DESCRIPTION OF THE RECOGNIZER PROGRAM

This document describes a program for recognizing hand-
printed information in real time. This program provides
on-line computer users with a means for inputting two-
dimensional information into a machine as simply as
writing with pen and paper. Operating under the Time-
Sharing System on the Q-32 computer at SDC, the program
uses a RAND Tablet for input and a CRT display (rear-
projected on the tablet) for output. Each user of the
program builds a unique character dictionary, based on
samples of his own input Characters. For each user, the
program currently recognizes about 100 different characters,
which are chosen from a larger character set by the
individual user. This document describes in detail the
various segments of the character recognition program and
their interrelationships. It also includes program flow
charts for each of the segments; a list of special notation
used; an explanation of tables used by the program; a
glossary of mnemonics and abbreviations used; and an
example of dictionary optimization.

19

1. INTRODUCTION

The following is a detailed description of the character recognition program
as of February 1968. The program described runs under the SDC Time-sharing
System (TSS) on the Q-32 computer. The description has been made as machine-
independent as possible, but is not necessarily independent of the system,
though one need not be familiar with the intricacies of TSS to understand the
program description. It is sufficient to know that all interactive 1/0 is
carried on through a PDP-1 computer semi-independently from the main processor,
the Q-32. These two computers communicate through a 16,000 (48-bit) word
core bank (called Input Memory) that is directly addressable by both computers.
A block of storage (1024 words) has been reserved in this core bank for refreshing
the CRT display that is an integral part of the Graphic Tablet Display (CTD)
console.

A special interface program has been included in the PDP-1 for the RAND Tablet.
This program, called GRID, is the only one described below that operates in
the PDP-1; all others operate in the Q-32 under TSS.

2. ANALYSIS

We have yet to institute formal testing of the character recognizer, although
several people have successfully used the program during investigation of
applications for the technique. The primary reason for not formally testing
the recognizer is its continuous state of change. Corner detection has been
improved, but perfection has not been attained. Intersections (cross-overs)
within a stroke are now found and have proven valuable in eliminating many of
the ambiguities that bothered us earlier. The present cross-over computation
is time-consuming and we believe a better way can be found. The feature
extraction method itself has been changed markedly and the resulting improvement
in performance has shown that effort to be worthwhile. All of these things
delay testing, but the major problem in testing a program such as this is
designing a meaningful test. What precisely should be tested and to whose
satisfaction? Should a random sample of people be chosen to build a dictionary
of some chosen subset of characters? What restrictions should be placed on
dictionary building, total number of samples, maximum number per character?
What is acceptable performance and to whom? How should the subjects be
motivated, toward high individual performance or toward "beating" the program?
Who should do the testing and under what circumstances? What can be learned
from such a test? We feel that it reasonable to have answers to these and
other questions before launching a testing program for the present version of
the character recognizer or its successors.

Though as yet not rigorously demonstrated, the original goals of this project--
we believe--have been met. Namely, the program recognizes at least 100 charac-
ters for a given individual, though probably not for any individual chosen at

21

random. We have implemented ways of manipulating the dictionary of character
definitions that allow purging unwanted portions of the dictionary, optimizing
definitions for multi-stroke characters, and merging dictionaries that were
created separately. As yet, we have not found a way of optimizing the multiple
definitions for single-stroke characters that does not complicate the dictionary
structure to a degree that makes new definition entry and searching exceedingly
time-consuming.

3. NOTATION

Because there exists little, if any, standard notation in either the 'ield
of programming. or character recognition, we have invented notation where we
felt it lent both brevity and clarity to the presented material, and have
stayed as close as possible to "accepted" representation in a l l other cases.

xy or p

dxy or hxy or exy

- h

Ah

Represent an ordered pair of coordinates; usually
provided by the input. E is used when it will not
cause ambiguity. When operations or functions are
applied to p, they are applied fully to both x and
y. Both representations may be subscripted, either
to denote a particular order in the sequence of
coordinates that make up a stroke, or to identify
a unique pair.

Represent the signed difference between two pairs
of coordinates, x -x 2 , yl-y2. When tests or
operations are performed on individual members of
the pair, they are separated in the form Ax and Ay.

Represents the heading--as computed by the function
D I R Q (Axy)--between two points. The values are
treated as signed two's complement fractions for
computational purposes.

The signed difference between two headings, hl and

h2 The sign indicates the direction of rotation
(minus for counter-clockwise and plus for clock-wise),
and the magnitude represents the amount of directional
change. Note that since the computation is done on
signed two's complement fractions, the larqest
change that can occur is 180 , indicated by a -1 3

22

111 II I II I I II

- S

- f

Min and Max

Stands for s t roke . In our program, a s t roke i s made
up of the ordered set of coordinates , p , input to
t h e program between the sequence of pen switch on
and pen switch off.

Stands for feature , Usual ly it i s only a port ion
of a s t roke.

Used i n their usual mathematical meaning. When
e i t h e r i s a p p l i e d t o a s t roke , S, t h e x and y
coordinates are t r e a t e d indepen(?.ently. Therefore,
min (p .) means min (xi) and min (yi) ; m a x (pi) has

a similar meaning,
1

The minimum rectangle surrounding the set of points ,
2 , which may be a s t roke , S , o r a subset of t h e
s t roke . Usual ly tha t subse t tha t cons t i tu tes a
f e a t u r e f (2) is obtained by computing M i n (Z) and
Flax(Z) and i s a pair of ordered pairs (x min 'Ymin) *

The center of th2;inimum rectangle R(Z). It i s
a n ordered pair x ,y . It i s computed as 1 / 2 (x +x), min max
1/2(Ymin+Ymax)

An ordered pair of di f ferences, Axy, spec i fy ing the
s i ze o f an e n t i t y A. It i s usua l ly computed from
R(A). The notat ion used in the f low char ts i s
S ize (R (A)). It i s computed as Axy=x "x max min'
~ ~ = y ~ ~ ~ - y , ~ ~ . Note tha t bo th AX and Ay a r e 2 0 .

Stands for charac te r . Ch i s used t o s p e c i f y an
output character , and may only be a l eg i t ima te
member of the output character se t (t h e s e t from
which t h e u s e r d e f i n e s h i s i n p u t) , Ch1 i s used
to spec i fy an input charac te r , and i s a co l l ec t ion
of from one t o n s t rokes , (so, s1 ... s,).

0

Represents output from the ANALYZER rout ine o ther
than a Ch@. Five values have been .used. They
a r e :

= a s t roke with too many f e a t u r e s o r (i n t h e
0 SAMPLE rou t ine) a Ch' with too many s t rokes .

23

a = a s t roke o r cha rac t e r no t found i n t he
dictionary; thus, an undefined character.

= a s t roke o r cha rac t e r i n t he d i c t iona ry t ha t
ends a t an intermediate node, has no Ch@
at tached, and i s , therefore , an in te rmedia te ,
undefined character. For example, i f t h e
f i r s t sample provided t o SAIPLE were a four-
s t roke I4 and t h e d i c t i o n a r y were empty, t h e
f i r s t t h r e e s t r o k e s e n t e r e d would have a u 2
appended t o them; t h e f o u r t h s t r o k e would
have t h e Ch@ "MI ' appended as i t s de f in i t i on .

a = end of strokes or vacuous stroke, 3
ah = an inva l id s t roke , def ined as one f o r which

bx+Ly 220 f o r any adjacent pair , p i , pl+l.

a = an empty p o s i t i o n u s e d f o r i n i t i a l i z a t i o n
purposes.

Represents the ANALYZER output for S. A (S) may have
0 as an intermed'ate value, but i t s f i n a l v a l u e i s
always e i t h e r Chh or a.

4 . TABLES

Var ious t ab l e s a r e r e f e r r ed t o i n t he fo l lowing desc r ip t ion (bo th i n t he p rose
and in the f low char t s) . In the contex t used here , each tab le i s made up of
e n t r i e s and each entry i s r e fe r r ed t o u s ing t he i ndexed t ab le name. Each
en t ry may be made up of items. These items are r e f e r r e d t o u s i n a t h e i t e m
names, and every i tem in the same ent ry has the same index as t h a t e n t r y .
I n t a b l e s whose en t r i e s con ta in i t ems , a r e fe rence t o an en t ry imp l i e s t he
co l l ec t ion of i t e m i n t h a t e n t r y . For example, i n t a b l e GI?@UP, each entry
conta ins the two items LSort and LGroup, The statement "Clear GROUPi" means

t h a t both LSort and LCroup are se t t o ze ro . In add i t ion , t he s t a t emen t

"Clear Table GROUP" means that both i tems LSort and LGroup in every en t ry
are s e t t o z e r o .

i i

Table 1 i s a l i s t of t h e t a b l e s u s e d i n t h i s program. I t inc ludes the names
of the i tems in each table entry and t h e number o f en t r i e s i n each t ab l e . In
o rde r t o conse rve co re space , t he t ab l e S@RT overlays DB, and GR@UP overlays
PTS. This causes no c o n f l i c t s i n c e t h e program i s n c t i n t e r a c t i v e when those
t a b l e s (SORT and GROUP) are in u se .

24

Figure 1, vhich shows'the relationship between the various routines of the
recognition program, also contains the list of tables that each routine uses,
and--following the table name in parentheses--the indices used by that routine
(if any) to refer to the table entries.

Table 1, Tables, Entries, and Items Used in the Recognition Process

Table (Entry) Name
IMJ3
DB
PTS

STRK
DICT
DICTE
DICT*

LEVEL
GROa
LTAB
ATAB
CTAB

S#RT

5.

It ems -
X,Y,14,C
X,Y,14,C
X,Y,I,Ct,h, h (Q overlays Ct

F,E,G,A(s) , D , R (S) ,E(S> ,R(f)
F,E,G,Def,Rc,NLink,SLink
DEQ,DGroup,DGLink,DMark,DT@
F*,E*,G*,Def*,Rc*,NLink*,SLink*
SgRTL ,S#RTR
LThis,LLast
Ch,GChain,GNLink,GSLink
LSort , LGroup
AI ,Abeg
CI ,Cbeg ,Cend

in XflVER)

PROGRAM DESCRIPTION

No. of Entries

1024
1024
300

15
512
512
512

15

15
5
10

1024 overlays DB

150 overlays PTS

5.1 DATA FLOW

Ignoring those portions of the implemented program that are used for testing
and debugging, we shall describe the sequence of events that take place during
the execution of the program. The flow of data through the system, including
both input data and control signals, will be described.

The over-all functioning of the system involves three hardware units, plus
the software of the time-sharing system. The three hardware units are:
(1) the PDP-1 computer, which interfaces and buffers all interactive input
and output; (2) the Input Nemory, a 16 K core storage module of 48-bit words
that is directly addressable by both the PDP-1 and Q-32 computers; and (3) the
Q-32 computer, a large (65K 48-bit word), fast (2.5-usec cycle tine) , general-
purpose digital computer on which TSS runs.

The Input Memory can be directly readby an object program running under the
Time-sharing System in the Q-32, but only the TSS supervisor may write in
Input Memory. Because there are no user programs running in the PDP-1, there
are no restrictions on its use of Input Memory. (Note that G R I D is considered
to be a system program, not a user program.)

-

25

Figupe 1. Character Recognizer Routine Relationships

The Graphic Tablet Display Cansole, around which t h i s program i s constructed,
in te r faces wi th the above hardware as fol lows: the RAND Tablet (Grafacon
1010A) used fo r i npu t i s connected t o t h e PDP-1 through a hardware in t e r f ace .
Each time an input i s ready at t h a t i n t e r f a c e , t h e PDP-1 i s in te r rupted .
These interrupts occur a t two d i f fe ren t ra tes : every 30 ms when t h e t a b l e t ' s
pen switch is o f f , and every 4 m s when it i s on. This pen switch on r a t e is
var iab le between 1 m s and 16 ms. The 1-ms rate cannot be handled by the PDP-1;
samples g rea t e r than 4 rns apar t would not provide adequate data,

The CRT d isp lay for the console i s d i rec t ly connec ted to Input Memory through
another hardware interface. A block of 1024 words of Input Memory i s reserved
i n a f ixed p lace for the re f resh buf fer o f the d i sp lay . The in te r face reads
from t h i s b u f f e r and "pa in ts" the conten ts on the display (cont inuously) a t
a r a t e of approximately 32 frames per second. The d isp lay re f resh may be
turned on and off manuaUye then on, the contents of the 102bword buffer
are shobm on the d i sp lay wi thout regard to the condi t ion of o t h e r p a r t s of
t he system.

To start the character recogni t ion program, it i s loaded for execution under
TSS v i a a te le type console in the same way as any o the r u se r ' s program. The
program then quer ies the user as t o h i s i n t e n t . For purposes of discussion,
assume he wishes t o use the tablet fo r i npu t . H e i n d i c a t e s t h i s i n t e n t .
The program!' (running in the Q-32 under TSS) then r eques t s t ha t t he t ab l e t
(i n r e a l i t y , t h e GRID program of t h e PDP-1, which i s a system routine, not
a user program) be attached t o t h i s u s e r as a pr ivate device. This insures
t h a t a l l inputs from t h e t a b l e t are d i r e c t e d o n l y t o t h e u s e r ' s program.
The GRID program at t h i s p o i n t is most l i k e l y t o have SW1 set t o I G N (see
Figure 2), though it may have been l e f t s e t t o TB, bu t t ha t w i l l no t a f f ec t
program execution, The program then generates a d isp lay image i n
Q-32 core consis t ing of three pushbut tons labeled "DRAW", "SAMPLE", and "TEST."
Only t h e la t ter two concern us here, This image block a lso contains t h e
appropr ia te cont ro l words t o s e t t h e G R I D program for use-- that i s , t o set
SWl t o TB and ass ign the first r e l a t i v e l o c a t i o n i n the buf fer where GRID may
s t o r e i t s inputs. This block of Q-32 core (which we s h a l l r e f e r t o as DB) i s
t r a n s f e r r e d t o t h e Enput Memory d isp lay buf fer (which we s h a l l c a l l IMB) by a
c a l l t o t h e TSS Supervisor. khen TSS r e t u r n s c o n t r o l t o t h e u s e r ' s program,
it then reques ts input from GRID and goes i n t o "wait" s ta tus through another
supervisor cal l . This means tha t t he ob jec t program i n t h e 4-32 w i l l not be
run aga in un t i l the GRID program informs the Q-32 that input has been completed
and it i s giving up cont ro l ,

With G R I D i n c o n t r o l , the user nov pos i t i ons h i s r e f l ec t ed pen pos i t i on spo t
over the "SAMPLE" Button and presses hard enough t o t u r n t h e pen switch on;

"This rout ine i s no t pa r t of the recogni t ion program i t s e l f , and thus i s not
documented here .,

27

he then re leases the pressure and the switch goes off . GRID has placed the
inpu t po in t s i n IMB, so t ha t t hey are now a pa r t o f t he d i sp l ay image. The
12-32 only allows space for one input point by GRID. When it f i n d s t h a t t h e
buf fer is f u l l , it c a l l s TSS t o t ake t he u se r ou t o f "wait" s t a t u s ; GRID then
e s s e n t i a l l y g o e s t o wait status i tself . (If t h e r e were more space i n IMB,
con t ro l would have been returned after a time delay on pen up of 1 / 4 sec.)

The user i s informed t h a t con t ro l has r e t u r n e d t o t h e Q-32 by the l ack of
t h e moving spo t r e f l ec t ing h i s cu r ren t pen pos i t ion , Bote tha t it i s poss ib le
t o e n a b l e GRID to accept inputs wi thout pu t t ing the Q-32 program i n t o "wait"
s t a t u s , b u t we have not t r i e d t h i s , even accidentally. If t h i s were done, t h e
two programs (G R I D and t h e u s e r ' s program i n t h e Q-32) could get out of
synchronization and both end u? w a i t i n g f o r e a c h o t h e r , t h u s e f f e c t i v e l y k i l l i n g
t h e program.

The Time-sharing System next takes t h e u s e r ' s Q-32 program out of " w a i t " s t a t u s .
The program reads t h e pen input from Input Memory, decodes the coordinates
in t e rms o f bu t ton pos i t i on , and e i the r r e j ec t s o r accep t s them. If the input
i s r e j ec t ed , t!le program simply goes back t o t h e beginning, rewrites Input
Memory, c a l l s G R I D and waits. If t h e i n p u t s are accepted, the program named
i n t h e b u t t o n pushed (i n t h i s c a s e , SAMPLE) i s ca l led and cont ro l passed to
it.

SAMPLE generates i t s i n i t i a l frame i n DB. Having divided up the buf fer b lock
appropriately, it se t s t he t ime de l ay (TD) .to 2 seconds, turns the smoothing

f l a g (SMFLG) on, c a l l s t h e s u p e r v i s o r t o w r i t e DB i n t o 1 1 0 , c a l l s GRID, and
goes i n t o "wait" s t a t u s .

The user next sees a new disp lay . He may then push a b u t t o n t o change t h e
keyboard displayed, or draw a c h a r a c t e r i n t h e w r i t i n g a r e a . G R I D r e a c t s
t h e same way as above. Assume t h a t t h e u s e r h a s drawn a character , say a ' I \ ' I .

The user should then wait f o r some response from t h e Q-32 program t o show on
the display before he proceeds. If he inadvertent ly starts t o draw o r push
a but ton before G R I D has given up control , he w i l l add information t o t h e i n ? u t
t h a t he has not intended and may--as a result--unknowingly add a meaningless
cha rac t e r de f in i t i on t o t he d i c t iona ry . When con t ro l i s r e t u r n e d t o SAMPLE
by the system, it checks the va l id i ty of the i npu t as a funct ion of both the
se t t i ng o f CHSW, and the pos i t i on of t h e i n i t i a l and f i n a l coordinates of
t h e f i r s t i n p u t s t r o k e . (A s t roke i s defined as 211 of the input occur r ing
between per. switc!? on and pen switch o f f) ,

Finding a va l id s t roke , SMPLZ c a l l s ANALYZER. The s t roke is analyzed and the
r e s u l t a n t f e a t u r e s t r i n g s e a r c h e d f o r i n t h e d i c t i o n a r y . Bote t h a t when SWLE
i s i n c o n t r o l , AIU-LYZER processes a l l s t rokes before re turn ing , on the assumption
tha t a l l of the input be longs to one charac te r . S ince the user ' s d ic t ionary
is empty, the input will not be found, SAIWLE adds the spec ia l cha rac t e r "%lt

28

t o t h e d i s p l a y image, r e l o c a t e s t h e INKORG so t h a t t h e i n p u t s w i l l not be erased,
sets t h e CHSW t o U, writes DB i n t h e IPrDB, c a l l s G R I D and waits. The user must
now "push" one of several buttons. If he draws another character or pushes
t h e wrong but ton , h i s input w i l l be erased and t h e program w i l l wait for another
input.

After complet ing the dict ionary, the user makes an input a t coordinate 0,O.
This, in essence, causes SAMPLE t o r e t u r n c o n t r o l t o t h e program t h a t c a l l e d
i t - - the control program of three pushbuttons. If the u se r were t o make an
input a t 0,O i n t h i s c o n t r o l program, he would r e tu rn con t ro l t o t h e t e l e t y p e .

The d i f fe rence between SAMPLE and TEST i s t h a t t h e r e are no inva l id inputs
t o TEST. Multi-stroke inputs are not treated as a s ingle charac te r .

The a b i l i t y t o e r a s e o r r e p l a c e an output character from the d i sp lay i s not
c ruc ia l t o t he ob jec t ives o f t he TEST. I ts main function i s t o t e s t the user -
constructed dict ionary. Replacement and erasure were incorpora ted to p rovide
a more realist ic usage environment, and t o c r e a t e a be t te r demonstration

.vehicle. Generating an output character of the same s i z e and a t t h e same
pos i t ion as the input charac te r aids in creating the proper atmosphere, These
c a p a b i l i t i e s were added t o TEST i n o r d e r t o s o l v e some of the known problems
t h a t w i l l occur when the charac te r recognizer i s used as a t o o l f o r an a c t u a l
problem solut ion.

A l l of the information concerning output character posit ion, size, and loca t ion
in the ou tput buf fer i s p laced in DLIST, which i s a simple linked l i s t , e x t e r n a l
t o t h e ac tua l buf fer . DLIST could have been implemented i n s e v e r a l ways. The
l inked l i s t was a design choice,

If the user then pushes "TEST", con t ro l w i l l be tu rned ove r t o t he TEST program,
TEST s e t s up DB i n two port ions: (1) a simple linked l i s t t o minimize wasted
space i n d i sp l ay ing a rb i t r a ry cha rac t e r s i n 5 x 7 dot matrix form, and (2) a
block reserved for "ink".

Assume t h a t t h e u s e r draws

C A T
This t akes f ive s t rokes . When G R I D r e t u r n s c o n t r o l t o TEST, t h e i n p u t s a r e
moved from IMB t o DB, and ANALYZER i s ca l l ed . ANALYZER r e t u r n s c o n t r o l t o
TEST i f one of several events has occurred: (1) a l l o f t he s t rokes i n DB
have been processed; (2) t he ma tch ing f ea tu re s t r i ng i n t he d i c t iona ry has
no successor s t roke appended t o it; (3) the next stroke processed does not match
any of the successor s t rokes o r it cannot match a f irst s t roke ; (4) the input
has too many fea tures and i s thus considered a "scrub" or erasure, o r it has

29

I'

a noisy point and i s consideTed invalid. One o f t h e r e s u l t s o f t h i s k i n d o f
i n t e rac t ive con t ro l i s t h a t a non-recognized stroke can change the "meaning"
of the remaining strokes from that intended. Each time ANALYZER r e tu rns con t ro l
t o TEST, TEST adds o r de le tes charac te rs in DB; only when a l l s t rokes a r e
processed does the result appear on the u se r ' s d i sp l ay , r ep lac ing h i s hand-
drawn input . If a l l goes w e l l , the user w i l l see :-- :-.-: ?? appear a t once on

t..* t-i .f.

the display, a l though each character was p l aced i n DS as it was recognized and
returned by ANALYZER.

To i l l u s t r a t e what can happen i f a s t roke i s not found, assume t h a t t h e u s e r
draws the following: e ca

f

on t h e t a b l e t i n the o rder , c,n,-,-, 1 , and t h e ANALYZER could no t f ind the
''0 " of the "A" i n t he d i c t iona ry , The user would s e e e i t h e r

.". !

...
r...
.L. z

1
I

t..

o r

. . .w

L.' ..".
e... ..
. ..

depending on where the cen ter o f the " f i t ' i s w i t h r e s p e c t t o t h e two s t rokes
tha t a r e no t t aken as a n 'I=". The f i r s t o f t h e s e two i l l u s t r a t i o n s shows the
most l i ke ly ca se .

5.2 RESPONSE TIME

We have been able to provide instantaneous response i n t h e one c r i t i c a l a r e a
required--namely, feedback from pen inputs t o t h e d i s p l a y so that " inkrr f lows
from t he "pen" i n real time.

Response time f o r t h e u s e r upon completion of input i s D. function of many
var iables . Natural ly , the more in t e rac t ive u se r s t he re a r e on the system,
the l ancer 5he de lays . In par t icu lar , the more people using tape and disc,
the longer the delays. Also, t h e more input there i s from t h e t a b l e t , t h e
longer e re the po ten t ia l de lays . The e f f e c t of t h i s f a c t o r i s hard t o measure
because of the o ther var iab les , bu t i f the p rocess ing takes more than one
quant;;m of interact ive user t ime (current ly about 600 m s) , t he u se r i s swapped
out and i s a t t he bottom of t h e i n t e r a c t i v e queue f o r one cycle,

30

In general , when t h e r e are less than 20 other users on the system, response
i s acceptable (though not instantaneous). When t h e r e are more than 25 users
on the system, response i s slow enough t o be annoying; when t h e r e are more
than 30 users on, response can become in to l e rab le .

If t h e SDC Time-sharing System had provisions f o r p r i o r i t i e s among t h e i n t e r -
ac t ive users , some of these annoyances could be lessened, but it doesn' t and
so from time t o time we w i l l be annoyed.

6 .

6.1

DESCRIPTION OF PROGRAM SEGMENTS

G R I D SUBROUTINE

G R I D i s a program tha t runs on the PDP-1 and provides the interface between
t h e RAND Tablet and t h e Q-32 Time-sharing System.

A l l communication between G R I D and t h e c a l l i n g program takes p lace v ia the
Input Memory Buffer (IMB). The cal l ing progi-m suppl ies the var iables
(SMFlg, TD, F and I N K L O C) i n t h e c o n t r o l words and G R I D p l aces t he t ab l e t i npu t
da ta (ink) in the buf fer beginning a t t h e l o c a t i o n s p e c i f i e d i n INKLOC. The
format of these inputs i s shown in F igure 2.

A flow chart of the G R I D subrout ine i s shown in F igu re 3. It i s n o t e s s e n t i a l
t h a t t h i s r o u t i n e s tar t with SWI a t I G N , s ince the t ime-out on TD guarantees
t h a t SWI cannot remain i n d e f i n i t e l y i n t h e TB p o s i t i o n i f any inputs have been
made, r ega rd le s s o f t he s t a t e o f t he 9-32 program. Note t h a t t h e PDP-1 i s
in te r rupted a t two d i f f e ren t i n t e rva l s : a t 4-ms i n t e r v a l s when psw (pen switch)
i s on, and a t 30-ms i n t e r v a l s when psw i s o f f ,

SW2 i s s e t when psw i s f irst detected. This saves both t ime and space,
because of the way the PDP-1 reads Input Memory. The smoothing algorithm
(enabled when SW2 i s set t o "on") merely replaces the oldest xy wi th the one
jus t read , then computes the average xy as output. The index j i s operated
as a r ing counter , modulo 8.

The f i l t e r f a c t o r F i s another of the var iables suppl ied by t h e c a l l i n g program.
A value of 3 is used for the f i l t e r . It w a s a r r ived a t empirically for drawing
very small charac te rs . N s i s t h e number of s t rokes input . Unt i l recent ly ,
N s has not been implemented properly, thus it i s used only by time-out t e s t i n g
i n G R I D and not by t h e Q-32 routines. Another function that could have been
included, had space been available (t ime was no problem), i s the computation
of the minimum rectangle surrounding each stroke, R(S). This would have saved
some time i n t h e Q-32 programs, a t the cos t o f buf fer space in the I N K area.

31

6.2 SAMPLE SUBROUTINE

The SAMPLE subroutine is used to build and test dictionaries is a one-character-
at-a-time mode. This program allows only one action at a time--drawing a
character (multi-stroke characters are allowed) or pushing a button.

Figure 4 shows a layout of the display the user sees when this program is
called. The user can then select one of five keyboards. The five keyboards
contain (1) digits, brackets and relationals; (2) upper-case Roman letters;
(3) lower-case Roman letters; (4) punctuation and special marks; (5) Greek
letters. The keyboards are shown in Figure 5 as they appear to the user.
The maximum number of characters per keyboard is 26.

A flow chart of the SAMPLE subroutine is shown in Figure 6. Those parts of
the flow chart concerned with the detailed control of the Display Buffer indicate
when various strokes are left and when they are erased, The buffer is allocated
as shown in Figure 7.

Communication between SAMPLE, ANALYZER, and DEFINE is through the inputs in
the DB, the STRK Table, and a set of standard global communication registers
plus, of course, the computer’s accumulator.

When an input is found in the dictionary as a defined character, the output
character replaces the input at the same place on the display at approximately
the same size, If the input is not defined, it is permitted to remain and
one of two special characters, ‘ h ‘ l or “z”, is output at the ILOC (a position
on the display surface) (see Figure 2).

The CALL GRID RPJD WAIT is a Time-sharing System dispatcher call. The call could
be given without a wait, but there is nothing that needs to be done in the interval;
also synchronization between the two programs would be more difficult.

Although not shown in Figure 6, there is a small master program to which SAMPLE
and TEST (see below) exit when the input stroke is found to be on the 0,O
coordinate of the tablet.

6.3 TEST SUBROUTINE

TEST allows the user to test a dictionary in a multi-character, interactive
mode, In addition, it provides two editing features: replacement of an
existing character with an input, and erasure of one or many characters with
one scrub, A flow chart of the subroutine is shown in Ficure 9.

The mode flag is set to “test“ so that ANALYZER does not assume that a l l of
the input strokes constitute one character,

The Display Buffer for TEST is organized as shown in Figure 8.

32

Byte

0 1 2 3 4 5 6 7
" " ~ ~

Ns

2

INKLOC

1023

C

TB Location I TD I INKLOC

Typical Display

by INK
+Word Inserted

I Figure 2. Storage Map for Display Buffer (DB) and Input Memory Buffer (IMB)

i

33

- RATID Tablet In t e r rup t

J 1 Return

8TD' + TD*

SVl + TB

i"l s psw on?

a 0

yi" SW1 + INK

0 + I!.rnTB

X9Y.M = 1 + l:mi
x y + "yp

Irfi$c + i

o * c
i+l + i

IS i = end?

no
4

Figure 3.

6

t
Return

t c +

XJ, 4 IlrIBi

=c + "yp
i+l -+ i

Is i = end?

1"1 Return

GRID Subroutine

34

Keyboard
Keyboard Button Area Change Button Pos i t i ons (ma)

/ I 1 Buttons
I

<-

Figure 4. Display for SAMPLE Program

35

Function
Buttom
(F136 1

% Clear
- Redefine

Writing
Area

" ~ ~

a. Dig i t s , re la t iona ls and bracke ts

c. Lower-case Roman l e t t e r s

d. Punctuation and special marks

e . Greek l e t t e r s (and other special marks)

Figure 5. Character Subset Keyboards

36

m a origin * KB0
origin .* ~ C E

Ink origin + BINK, INK0RG

f Tn. SMflg.F,INK0RG * DB Control Wda

* DBINKORG. 1023
DBO, 1023 * Im0, 1023

Call GRID and W a i t

4
lMBIITKORG, INKLBC + DBINKORG. INKL0C

Is So on 0. O?
I I

Ye6

. -_
n0 el Return

J

* DElCH at I L 0 C

".lK + INK0RG -1
INKLlC + INK0RC

L 1

Figure 6. SAMPLE Subroutine

L

37

0 Control Word
I '

"

Permanent Buttons

(FBs and KCFs)

Keyboard Buttons

(K B ~)
_.

(OCH

I N K Area

1023 Control Word
Figure 7. Display Buffer Allocation for SAMPLE

-~ ~ . - . _..
____"" "

9- Control Word
"_l." 1 1

Permanent Image
acd Function Button)
"~ ""

Linked List for
Output Character Generator

""__-.ll . " ...

INK Area

i323
____I__- ".. - ""
Control Word i

Figure 8, Display Buffer Allocation for TEST

38

Set origin of ChO Black in DB
Ink origin + BINK

Link DE ChO Block
Generate ChOa on DLIST in DE ChO Block
"

'lea' DBINKORG. 1023
TD, SMZlg.P, IllKQRC * D9 Control W d 6

DBO, 1023 * IMB0, 1023

!

I

Figure 9 . TEST Subroutine

39

The Dfsplay L i s t (DLIST) i s a l inked l ist of output characters and o the r
in format ion requi red for phys ica l ly loca t ing the ind iv idua l charac te rs on
the d i sp lay sur face .

Each element contains the following:

1. Location of the lower left-hand corner of the output character.

2. Size (R(Ch 1) . I

3. A pointer into the Display Buffer to the or igin of the points forming
the ou tput charac te r .

4. The output character code.

5. A l i n k t o t h e n e x t item (0 ind ica tes t she end of the Display L i s t) .

The l imi ted ink space in the Disp lay Buffer (ac tua l ly the IM Buffer) al lows
input of 6 t o 8 small cha rac t e r s , 3 o r 4 medim.-sized cha rzc t e r s , 1 o r 2
i a r g e c h a r a c t e r s , and 1 o r less very l a rge Charac te rs . (This l imi ta t ion o r
extra- large characters i s a problem.)

Wher? an output i s passed t o TEST from ANALYZER, t he d i sp l ay l i s t i s searched
t o s e e i f any c h a r a c t e r s a r e t o be de l e t ed , The t e s t i s performed by computing
t h e c e n t e r of the charac te r on t h e DLIST and comparing t o s e e i f it l i e s within
t h e minimum rectangle surrounding the input , R(ChI) , A l l charac te rs for which
t h i s i s t r u e are de le ted from t h e DLIST and DB.

Although t h e program current ly outputs one of two spec ia l cha rac t e r s on t h e
display ("%" o r " 2 ' ') when an unknown character occurs , i t may ac tua l ly be
p r e f e r a b l e t o do noth ing , tha t i s , to i gnore t he i npu t . Fo r t e s t ing and
debugging purposes, though, these special characters have been of value.

6.4 ANALYZER SUBROUTINE

ANALYZER is--in reality--two programs: one i s coupled t o SAMPLE and the other
t o T E S T . Each part could have been included as pa r t o f t hose rou t ines , o r
coded as separa te ly ca l lab le subrout ines , bu t it was more e f f i c i e n t t o have
but a s ing le rou t ine . The d i s t i n c t i o n between t h e two pa r t s o r func t ions o f
ANALYZER i s obvious from a cursory examination of Figure 10.

In o rde r t o gua ran tee t ha t t he program executes the p roper func t ion , the var iab le
tmore i s i n i t i a l i z e d t o z e r o and i s maintained a t tha t va lue whenever ANALYZER
completes the analysis for a set o f s t rokes i n t he TEST mode. Therefore,
on an i n i t i a l e n t r y w i t h a new s e t of s t rokes , t he func t ion i s d i f f e r e n t i a t e d
by examining the mode f l a g whose s e t t i n g and r e s e t t i n g i s completely under
control of TEST:.

40

L_rJ Set Return

yes no

t
Is D = 0 or is A (S) = 02?

I I Y'"

I-,

Figure 10.

I 6 Enter STR0KE

ANALYZER Subroutine

41

That part of ANALYZER associ.ated with SAMPLE assunes t h a t a l l o f t h e s t r o k e s
t o be processed belong t o a s ingle input charac te r . The program successively
processes each s t roke un t i l the end of input (a) o c c u r s o r u n t i l an inva l id

s t roke (as de f ined i n t he STROKE subroutine) occurs. ANALYZER bu i lds a t a b l e
o f ou tpu t s (ca l l ed STRK) from the input s t rokes, wi th each entry col l ta ining
the fol lowing items: F and E (t h e f e a t u r e s t r i n g f o r t h e s t r o k e) ; Gm (t h e

geometric relationship between the mth s t roke and i t s co l lec ted p redecessors) ;
A (s) (the r e su l t o f d i c t iona ry s ea rch ing o r o the r ANALYZER r e s u l t s) and

D (t he d i c t iona ry de f in i t i on fo r t he m t h s t roke and the successor l ink from

t h a t e n t r y) ; R (s) and R (f) (t h e minimum rectangle surrounding the s t roke

and the rectangle surrounding a l l s t rokes through the mth one) ; and--as a
separa te item--Ns, t he number o f s t rokes i n t he cha rac t e r ,

That part of ANALYZER used by TEST i s a b i t more complex. Rather than being
cont ro l led by the i npu t s , it i s cont ro l led by the conten t o f the d ic t ionary .
It therefore can only determine when t o o u t p u t a c h a r a c t e r t o TEST as a r e su l t
of searching t h e d i c t iona r Thus, i t must be able t o back up t o t h e last
l eg i t ima te cha rac t e r (a Ch) t h a t it found, i n some cases . STRK table a l s o
conta ins the ou tpLt of the ana lys i s , Cont ro l i s r e t u r n e d t o EST each time
ANALYZER has found (1) a node i n t h e d i c t i o n a r y t h a t h a s a Ch 5 as i t s d e f i n i t i o n
and no successor l ink, or (2) an intermediate undefined dict ionary node (a) not

Preceded by a ChQ) in t he ou tpu t t ab l e and no match on the successor s t roke , or
(3) can f ind no match fo r a s t roke a t a l l (CI) or (4) a scrub stroke (oo--anythinp

with too many f e a t u r e s) o r (5) t h e end o f . i n p u t (0). Inva l id s t rokes (a) are

ignored. A l l o f the per t inent ou tput da ta , A m (s) , R m (f) and E m (f) , are placed

i n t h e f i r s t t a b l e e n t r y b e f o r e c o n t r o l i s r e t u r n e d t o TEST each time.

3

m m

m

m

m rn

8'

2

1

3 4

6.5 STRmKE SUBROUTINE

STROKE processes one s t roke a t a time
of the STRK tab le , and sets A (s) = u m 1
as i n i t i a l v a l u e s . It then determines
poin t ing a t t h e beginning of a s t roke

(see Figure 11). I t c l e e r s t h e mth en t ry
(undefined) and Am+l(s) t o a5 (empty)

i f t he i ndex po in t ing t o t he i npu t s i s
(M=l i n D B t) ; i f n o t , it indexes on unt i l

it f i n d s t h e beginninti: of a s t roke or t h e end of input. !Then t h e beginning of
a s t roke i s l o c a t e d , t h e xy coordinates and the re jec ted po in t count are
t r a n s f e r r e d t o t h e PTS t a b l e . Each en t ry o f PTS contains the i tems X , Y , C t
(t h e x and y coordinates and r e j ec t ed po in t coun t) ; h (the heeding reduced t o
one of 32, between adjacent points); ah (the d i f f e rence between adjacent
headings) ; and I (a marker fo r co rne r s and o the r pa th f ea tu re s) . After
t r ans fe r r ing t he po in t s from DBUFR, it determines whether or not the s t roke
i s v a l i d (it i s inva l id (0,) i f t h e sum of the absolu te va lue o f the d i f fe rence

42

-5 c+b * pix
t

t+l * t

"0 e, &
Ct + C t

43

between adjacent coordinates i s g rea t e r t han 2 0) , and i f it i s , locates any
ex is t ing corners . Upon completion of corner detection, it tes t s f o r a hook
t h a t may be eliminated from t h e end of t h e s t r o k e and en te r s t he sub rou t ine
BOTH t o c o n t i n u e t h e f e a t u r e e x t r a c t i o n .

6.6 BOTH SUBROUTINE

A f t e r i n i t i a l i z i n g t h e i n d i c e s p and q and f c (t h e f e a t u r e c o u n t) , BOTH (see
Figure 1 2) e n t e r s INFLEX (see below) to de te rmine i f t h e r e i s an i n f l ec t ion
point between the beginning of the stroke and t h e f irst corner , or t h e end i f
no corners are present . If k (a parameter set by INFLEX) equals zero , the
amount of curvature was below t h e t h r e s h o l d f o r a s t r a i g h t l i n e , and BOTH outputs
a pair of feature codes based upon a table (see Figure 1 2) t h a t d e s c r i b e s t h e
segment (pa r t o f t he s t roke i n ques t ion) i n terms of the numbered areas (see
Figure 13) occupied by t h e end points. If c i s non-zero, an inflection point
has been detected and marked, or i f t h e c u r v a t u r e ((E l) i s i n s u f f i c i e n t , no t e s t
w i l l be made on t h e segment f o r an i n t e r s e c t i o n and t h e area f ea tu res w i l l be
generated.

INFLEX computes t h e minimum rectangle surrounding the segment, Rm(f) and

from it BflTH computes t h e dimension of the diamond center area, (see Figure 1 4) .
I f an in f l ec t ion po in t i s marked (c = l) , t h e "no output" occurs (except for the
occurrence of the inf lect ion point) whi le the s- i roke or segment i s i n t h e c e n t e r
diamond. On the o the r hand , i f no in f l ec t ion po in t i s found and t h e t o t a l
curvature i n t h e segment o r s t roke i s g rea t enough, XflVER i s entered (see below),
I t looks for c losed loops and gene re t e s t he app ropr i a t e f ea tu re s t r i ng dependinR
upon what it finds. Because the curvature i s h5gh and t h e r e i s no i n f l e c t i o n
po in t , no center diamond area i s computed i n XflVER. Upon r e tu rn , i f t h e s t r o k e
is not completely processed, a "C" (denot ing the occurrence of a corner) i s
c o n c a t e n a t e d t o t h e f e a t u r e s t r i n g and the fea ture count i s t e s t ed . (Th i s i s
the on ly reason in the cur ren t program f o r p r o c e s s i n g l e s s t h a n t h e f u l l s t r o k e ,)
I f the fea ture count i s t o o l a r g e , t h e minimum r e c t a n g l e f o r t h e s t r o k e i s
computed, the output code i s set t o o and a r e t u r n made t o t h e c a l l i n g r o u t i n e .

I f t h e r e i s s t i l l room f o r more f ea tu res i n t he s t r i ng , t he r ema inde r or next
segment of t h e s t r o k e i s processed,

0'

IKFLEX (see Figure 15) not only-detects and marks i n f l e c t i o n p o i n t s i n t h e
path, but a l so computes t h e minimum rectangle around the segment o r s t r o k e ;
i f it i s a subsequent segment, INFLEX genera tes the geometr ic re la t ionship
f ea tu re between the cu r ren t segment ar,d the co l l ec t ion o f p redecesso r s i n
t h i s s t roke . In de t ec t ing i n f l ec t ions , i n i t i a l l imi t s on cu rva tu re a r e s e t
at 318 f o r a c lockwise rotat ing s t roke, and -3 /8 f o r a counter-clockwise

44

IS c = O?

";",

1

2

2

3 4

"----I

w APUT('I'1

Figure 12. B@TH

[R e t u r n 1

Subroutine

J
0

45

4 1

3 2

Figure 13. Segment Znd-Point Areas

4 1

3 2

-

1 / 2 max (he ight , wid th)

I

Figure 14. Segment Feature Areas

46

Set Return

318 + H
-310 + L

0 Aha + T t

b

no yes

,,, HED8(Ax. Oy) + ecode

~~ ~

Figure 15. INFLEX Subroutine

47

r o t a t i n g s t r o k e , If ne i the r t h re sho ld i s exceeded, the segment o r s t roke is
t r e a t e d as a s t r a i g h t l i n e by BOTH. As soon as one of the thresholds has been
exceeded, the other i s modified so t h a t t h e d i f f e r e n c e i s 3/8. Only a f te r
one and then the other of the two thresholds has been exceeded (using the
proper s igns) i s it assumed t h a t an i n f l e c t i o n p o i n t e x i s t s . Then a search
i s made backward from the po in t t ha t con t r ibu ted t he amount of curvature needed
t o exceed the second threshold to the best approximation of the inf lect ion
point. This determination i s made by having the index "a" poir.:ing t o
t h e l as t point which exceeded a l i m i t t h e f irst time, using "k" as a switch,
A temporary sum i s generated backwards from the point indexed by "a", decrementing
''ar' each time, u n t i l a l i m i t of 5/16 is exceeded. The i n f l e c t i o n p o i n t is
then marked h a l f way between the point indexed by t h e l as t point examined
(indexed by p) ' and the p resent po in t indexed by a. The detect ion process
cont inues, marking each inf lect ion found unt i l e i ther a corner o r t h e end
of t h e s t r o k e i s found.

6.8 X@VER SUBROUTINE

X@VER i s entered from BgTH (see Figure 1 6) only i f no i n f l e c t i o n p o i n t i s
found and t h e t o t a l c u r v a t u r e found by INFLEX up to the p resent po in t exceeds
1 (t h a t i s , a h a l f c i r c l e) . The f l a g "k" i s set by INFLEX t o i n d i c a t e t h e
d i rec t ion of curva ture ; 3 for clockwise and 5 for counter-clockwise. If
the end-points of the segment o r s t r o k e are within 8 raster u n i t s o f one another,
o r they a re wi th in one t h i r d of the width of R (f) i n x and one t h i r d t h e h e i g h t s

of R m (f) i n y , t h e p a t h i s considered closed and t h e e n t i r e f i g u r e i s taken
as a loop. The code va lue s tored by INFLEX with a zero added i s used as t h e
output feature code. Otherwise, the path i s followed through the four quadrants
(see F i g u r e 1 3) u n t i l a quadrant i s re-entered by the pa th and ended i n o r
has exi ted the quadrant .

m

\Glen th i s c i rcumstance a r i ses , MINPTS i s en tered to de te rmine the two poin ts on
the pa th wi th in the Same q u a d r a n t t h a t a r e c l o s e s t t o o n e a n o t h s . MINPTS s e t s
t he appropr i a t e f ea tu re code i n C I f o r the condi t ion found beI 'are re turnina

to X@VER; it a l so ind ica tes whether o r no t a l l of t h e s t r o k e o r segment has
been examined i n t h e p r o c e s s (x t r y = 2) s o t h a t X@VER can complete the feature
s t r i n g f o r t h e p a t h . If no loop is found, XgVER generates a f e a t u r e s t r i n g
based on t h e four quadrants of the minimum surrounding rectangle . Note t h a t
t he cen te r diamond i s not used.

C

6.9 MINPTS SUBROUTINE

YINPTS (see Figure 1 7) i s entered from XGVER wi th the ind ices q and p s e t t o
the beginning and end of t he po r t ion of t h e s t r o k e t h a t h a s begun and ended
i n t h e same quadrant of the minimum rec t ang le . If the pa th has no t ended i n
the quadrant , a search i s made forward (toward the end) t o determine if t h e r e

48

Clcnr ATNlo

I+[Is k = l?

* le p = pl im7

1 I

Figure 16. XgVER Subroutine

49

["-
"0

I

DIST(p.q) - dist
Is dist = mdist?

-

4 Is dlst mdist?

I I

no

C+l * c

Figure 17. MINPTS Subroutine

50

i s a pair of points (xy xy) closer than the beginning and ending pair

(xy , xyq). By appropriately manipulating p and q , t h e p a i r o f p o i n t s t h a t

are a minimum dis tance from one another is determined, If t h a t d i s t a n c e i s
less t h a n o r e q u a l t o 8 raster un i t s (65 is used i n MINPB because the rout ine
DIST genera tes the square o f the d i s tance) , a closed loop has been found;
otherwise the path is not conbidered t o have an in te rsec t ion or to be c losed ,
t he appropr i a t e quan t i t i e s and t a b l e s are updated and control is r e t u r n e d t o
XOVER .

P+n' q

P

6.10 QUAD, APUT and DIST

These three subrout ines (see Figure 18) are service rout ines used by BgTH,
XOVER and MINPTS.

QUAD simply assigns FL quadrant number based upon t h e Ax and Ay supplied by
the ca l l i ng rou t ine . In a l l cases of i t s use , t he ca l l i ng rou t ine supp l i e s
AXY = X,Y - 8 (f) .

APUT simply concatenates the feature supplied when the rou t ine i s e n t e r e d t o
t h e r i g h t end of the fea ture s t r ing (Fm) , and increments the feature count (fc)
by one.

DIST computes the square of t he d i s t ance between two poin ts xy and xy , i and

j (i n d i c e s p o i n t i n g t o two e n t r i e s i n t h e PTS tab le) supplied by t h e c a l l i n g
rou t ine .

i j

6.11 DEFINE SUBROUTINE

DEFINE (see Figure 19) adds def in i t ions t o the d ic t ionary . The DEFINE rou t ine
s tar ts wi th the las t s t roke o f the input (en t ry m of the STRK t a b l e) , i n s e r t i n g
only those s t rokes tha t were not found by SEARCHD. If a l l of the requi red
s t roke in format ion for the new character cannot be added because of insufficient
space, none i s added t o t h e d i c t i o n a r y , t h u s e l i m i n a t i n g t h e problem of dangling
en t r i e s . I n add i t ion , it sets the va r i ab le "de fn" t o "OK" (i f s u c c e s s f u l) , o r
t o "NG" i f t h e above problem arises,

6.12 SEARCHD SUBROUTfNE

SEARCHD (see Figure 20) determines from the index m i f t h e s t r o k e t o be searched
i s t h e f irst stroke of an input character o r a successor stroke. If t h e
s t roke i s a f irst s t roke , t he rou t ine SEARCHF i s entered. Otherwise, SEARCHD
computes the geometr ic re la t ionship between the cur ren t s t roke and t h e c o l l e c t i o n

51

L_T__I Set Return

I J
"1- no no

I

1 4 *Q!D I I 3 * QUAD 2 +QUAD f 1 + c QUAD

I I I t I
t

Lr_J Set Return

+ fc+l + fc

I Set Return 1 ' (xi I2+(yi-yJ) + DIST

Figure 18. QUAD(Ax,Ay), APUT (x) , and DIST(i,J) Subroutines

52

I S e t Return I

1 I Is DLOC \< SLOC? 1 1 Is 9. = O? I I

.~ t t t
Output "DICTIONARY OVERFLOW" SLinkd -+ NLinltII + Defd

I A o (S)
a -P SLinkd

1

k -+ SLOC

'PIG' -+ defn
P

1

- I , Is m = O?

t I I ' Return

Return

SLOC-1 -+ smc

" DLOC+l + DLOC

Figure 19. DEFINE Subroutine

53

no Yes

1 Is dx 5 and dy 5

I Enter SEARCHF I
t
Return

I no

L

no

I

Size(Rm(f))-Size(Rm - l(f))-Size(Rm(S)) + dxy

Are dx and dy s O?

I

1Are dx and dy r< l/S(sx+sy)? I
I

I
no

4

Enter SEARCHS

I
1 Return

Figure 20. SEARCHD Subroutine

54

its predecessors. It first computes the minimum rectangle surrounding all
strokes to this point and its size. It then differences the center coordinate
of the rectangle surrounding the current stroke with that of its predecessors
and determines if they are coincident. If they are, SEARCHS is called directly,
(Gm is preset to zero and that is the code used for coincidence.) If the two
rectangles are not coincident, the center-to-center direction is computed
using the routine HED8, and inclusion or overlap and nearness are tested
by computing

dxy = Size(Rm(f)) - Size(Rm - l(f)) - Size(Rm(S))
Figure 21 illustrates several examples of this computation, If from this
test it is determined that the rectangles are "near," 16 is added to the
center-to-center heading to complete the code for the geometric relationship;
otherwise 24 is added to indicate that the rectangles are "far" from one
another.

-

AY

Ax

Figure 21. Examples of Overlap Computation

55

6.13 SEARCHF SUBROUTINE

S E A R C H F (see Figure 22) begins i t s search for an exact match with the las t
en t ry o f the f i rs t s t rokes i n DICT. (Figure 23 shows the content and layout
of D I C T , t he cha rac t e r de f in i t i on d i c t iona ry .) If an exact rnatch i s found
for t he f ea tu re s t r i ng o f t he unlcnown s t r o k e , t h e r o u t i n e e x i t s w i th t he
d i c t iona ry l oca t ion i n D and t h e d e f i n i t i o n (Def) o f t h a t e n t r y i n Am(S).

If no rnatch i s made, D . i s set t o z e r o and A (S) i s s e t t o al.
m

m m

6.14 S E A R C H S SUBROUTINE

GEARCHS (see F igure 24) begins i t s search by examining Dm-1 to determine whether

or not a l eg i t ima te successo r s t roke ex i s t s i n t he d i c t iona ry . If Dm - i s not

equa l t o ze ro , t he successo r l i nk o f t he p rev ious s t roke must also be non-zero,
o therwise the rou t ine re turns wi th D e q u a l t o z e r o and A (S) s e t t o 0

I f a successo r s t roke ex i s t s , an exact match must be found between the .feature
string and geometric relationship of the unknown s t roke , and the d i c t iona ry
entry. A l l of t h e p o t e n t i a l s u c c e s s o r s t r o k e s a r e t e s t e d i n t h i s way u n t i l
e i t h e r an exact match i s found or a ' ' nex t l ink" equal to zero i s found. I n
t,he former case, the rout ine re turns with Dm e q u a l t o t h e d e f i n i t i o n l o c a t e d

at t h a t entry. I n t h e l a t t e r casep t he rou t ine r e tu rns w i th Dm equal to zero

and A (S) e q u a l t o al.

m m 1'

m

6.is H E D 8 and D I R Q SUBROUTINES

HE33 (see Figure 2 5) and D I R Q (see Figure 26) are two subrout ines used for
quant iz ing direct ion. Both rou t ines work from t ab le s . The i r bas i c d i f f e rence
i s the degree o f f ineness o f the quant iza t ion . HED8 q u a n t i f i e s d i r e c t i o n s
i n t o one of 8; DIRQ, i n t o one of 32. The values shown i n HED8 (Figure 25) are
the va lues u sed . In o rde r t o f a t i l i t a t e d i f f e renc ing o f t he head ings computed
by D I R Q (i tem h of t h e PTS t a b l e) t o form Ah, the ou tput va lues are formed as
t v o ' s complement f r ac t ions and a re d i f fe renced as f u l l word two's complement
f r ac t ions . A difference of -1 always r e s u l t s from a 180° change of d i r ec t ion
between the two headings; +1 neve r r e su l t s , t hus gene ra t ing cons i s t en t va lues .

6*i6 PURGE, MERGE and @PTIMIZE SUBROUTINES

These th ree programs do not run under the same con t ro l as those discussed
abovc. Because they require communication t h a t would be d i f f i c u l t t h r o u g h
 he Graphic Tablet Display console, they communicate wi th t he u se r

56

DICT

+1

+3

+3
+4
+5
+6

+n-6
+n- 5
+n-4
+n-3
+n-2
+n-1

+n

I -DLOC I
1

First
Strokes

Successor

Strokes

Figure 23 . Character Definition Dictionary

57

I

Is Dictd(E,F) = E F ? m’ m
I +, Defd + Am(S)

E 5 Return

E 3 Return

Figure 22. SEARCHF Subroutine

L7-J Set Return

1 Dm-1 + d
Is d = O?

I I

Yes no

Is d = O?

Figure 24. SEARCHS Subroutine

58

' T (signAx,signAy, + Hh8 8

c I

I Return

7 1 3 1 5

61216

Figure 25. HED8 (Axy) Subroutine Flow Chart and Table

59

I Set Return I

e Return

O I O

I

I

L
2 1 - 1 2

Figure 26. DIRQ (Axy) Subroutine Flow Chart and Table

60

via a keyboard console, This imposes no hardship, since the keyboard consols
is required to initiate loading and other communication required by the Time-
Sharing System.

6.16.1 PURGE Subroutine

When called from the keyboard console, the program asks the user to supply a
purging threshold--that is, the recognition count (Rc) level below which entries
are to be removed. (It should be remembered that ANALYZER increments the
recognition count of an entry each time a completely successful match is made
between an input character and a dictionary entry.) If the user replies "NONE,"
the program asks which characters or entries, regardless of recognition count,
are to be removed. This interactive conversation is not actually a part of
the PURGE routine (see Figure 27), but rather is a part of an interactive
keyboard control program that provides the interface between the user and the
various service and special debugging aids that are a part of the system.

After the user supplies the appropriate response, the PURGE program methodically
searches the dictionary, entry by entry, following the links comparing the
recognition count to the user-supplied threshold--called Thresh--and output
character code--called PChar (only one is valid). PURGE marks those entries
that meet the criteria as "undefined" entries, and sets the recognition
count for those entries to zero. It then removes and restructures the appropriate
links for first-stroke entries, In order to accomplish this task, it uses an
additional table, DICTE.

When it has examined every entry, PURGE then enters COMPACT (see below), a
program that does the restructuring of the dictionary to recover space of
the vacated entries. Note that in the case of multi-stroke characters, only
those strokes of the definition are removed that are not linked to some other
entry that is not to be removed, That is, only the last n strokes of an m-stroke
definition may actually be physically removed from the dictionary. Take, for
example, a four-stroke "M" drawn as where the first three strokes are defined
as an "N". If the user requests that "M's" be removed from the dictionary, only
the fourth stroke of the "M" in question will actually be removed and the first
three strokes that define an "N" will be undisturbed.

6.16.2 COMPACT Subroutine

COMPACT (see Figure 28) starts with the first of the successor strokes, compacting
the entries by removing those indicated in the DICTE tables by the calling program,
and restructuring the links appropriately so that the entries are tightly packed.
It then restructures the links in the first stroke and the successor stroke
entries from the information saved in the DICTE table.

61

Set Return

Clear DICTE Tnble

0 +S1. 82

’10 Yes

, - q ,e, SLinkd * d

d +. LLastk

Is d = O?

n: yes

I

Is Derd = PChar?

1 +. DMarkd

Is k = O?

yes e IS Lust = O?

NLinkd * SLinkt

Figure 27. PURGE Subroutine

62

,*,
Dictk + D i c t

no Yes

k-1 -f k d + SLOC

l + d

NLinkd + k ~

DTak + NLinkd

SLink + k
d

DT0, + SLinkd

d + l + d

Is d DLOC?
I

yes I

Figure 28.

6.16.3 MERGE Subroutine

The interactive keyboard control program requires the user to specify the
file name of the dictionary that is to be merged into the existing one. When
it receives a proper name from the user ("proper" in this sense means that it
is the sane of a file that the user may access), it reads the dictionary file
from the system's disc storage into a second dictionary space called DICT".
MERGE (see Figure 2 9) then takes the strokes from DICT" following the links,
as if they were coming from the SAMPLE program, building a STRK table and
searching the existing dictionary for matches. If a complete match is found,
the sum of the recognition counts plus one replaces the recognition count in
D I C T . If no match or an incomplete match is made in DICT, the non-existent
strokes are added to DICT by calling DEFINE.

In the case where there is an exact duplicate of feature information but the
definitions in the two dictionaries differ, the user is asked to make a
choice between the two available characters or delete the entry entirely,
If he chooses the latter, it is noted and ?URGE is called to delete the
troublesome definitions. If the result of the merge produces a dictionary
that is too large, the user is'informed that the merge was incomplete, and
he is unfortunately left with a dictionary of unknown content. Thus, it
pays to have previously saved a copy of both dictionaries that are to be merged
and to have purged and optimized at least one (if not both) dictionaries before
beginning the merge. Our present system permits the user to save any dictionary
on the system disc storage (at least temporarily) with any arbitrary name
attached, Therefore, it is not unreasonable to keep several versions of the
same dictionary available in case of emergency or for experimentation,

6.16.4 Optimization

The process of optimizing the dictionary is one of recognizing groups of
dictionary entries that are unambiguously equivalent, and re-linking the
dictionary to reflect this equivalence.

Two dictionary entries are considered to be equivalent if they are on the
same dictionary level (i.e., both first strokes, both second strokes, etc.),
and one or more of the following conditions also holds true:

1. They have the same character definition.

2. They have successors at a common dictionary level that have
the same character definition.

3. They are identical (in feature, envelope, geometric-relation)
and their most immediate predecessor strokes are equivalent.

In forming equivalence groups, an additional rule is applied: two entries,

64

Set R e t u r n

0 .+ PC, Ov

(D i c t 2) .+ D i C t '

0-c m

J

Is a = O? Is a < DLOC*?

no I

no

' D e f d t OR 'Def,' OR UND."

no

"MERGE INC0MPLETE" "MERGE OK"

6

8 + E n t e r DEFINE

Figure 29. MERGE Subroutine

65

each equivalent to the same third entry, are also equivalent to each other.
Finally, a. dictionary entry that is equivalent to no other dictionary entries
forms a one-member equivalence group by itself.

A n ambiguous equivalence group is one in which members have conflicting character
definitions; that is, among those members of a group which are not intermediate
strokes, more than one unique character definition is present.

The optimizer divides the dictionary first-stroke section into a set of
equivalence groups. Then, taking each of thse groups separately, it further
groups all successors, at a l l levels, to members of this group, The grouping
process results in a tree structure whose nodes are equivalence groups. Each
group, except the first, is a next-level successor group to some previous
group. For each tree structure, ambiguity at any node renders the whole tree
ambiguous, and the dictionary entries associated with the tree are not optimized,
Otherwise, three kinds of optimization are performed:

1.

2 .

3.

Where a group contains subgroups of identical dictionary
entries, all but one member of each subgroup are deleted from
the dictionary.
When a group contains members that are intermediate strokes
as well as members that have a character definition, the
intermediate strokes are redefined to that character.

A l l members of each successor group are linked, in the
dictionary, as next-level successors to all members of its
parent group. This provides definition paths in the dictionary
which did not before exist.

6.16.5 OPTIMIZE Subroutine

Optimization is performed by procedure OPTIPlIZE (see Figure 3 0) er.d the
procedures DTREE, ADDGROUF', GTREE, GCHECK, RELINK, and COMPACT which it calls,
OPTIblIZE determines the membership of an equivalence grouc at any level from
information contained in the section of the SORT table ?GI- thaf level; thus,
! ~ e f o r e any prouping is performed, the first-level section sf the SORT table
is constructed by applying procedure DTREE to each first-ntroke entry of
the dictionary.

6.16.5.1 DTREE Subroutine

':!hen procedure DTREE (see Figure 31) is applied to a dictionary entry (entry),
it examines er.try and its successors at all lower levels, For each such P
entry that has a character definition (i s not an intermediate stroke), it

F

66

0 * GR!WPO. LTnSo, L T B l
C l e a r DICTE T a b l e

0 + s 0 5 , SORTl
0 * CP

I * E n t e r D T R E E

Q
L+1 * I

E * LS@RTi

0 + S p T C

C+l + E

I

cl IS p = O?

& S RTLc * Temp

c+1 * R

SORTRp * t
LS0nTt+1 + p

t * GChaln
Deft * Ch

0 + CIILinkg. CSLlnk

g f DCro"pt

f f i roupI- l + t

R * ffiroup

IS t = O?

'i" I

P + l * P

!??

s0RTR * t

IS t = O?

I S 1 = 11

w
no

Enter GTME(CCHECK)

t
I

1 E n t e r GT%EE(RILINK) I

w
no

Enter GTME(CCHECK)

t
I

1 E n t e r GT%EE(RILINK) I

Is S0RTL- = Temp?

SdRTp
- SORTc C+l * c

I S S ~ R T = o?

LSORTI+l * p

LSVRTI * E

YFS "?

Figure 30. @PTIMIZE Subroutine

67

SLink: + i
NLinki + i

IS i = o?

+
c-1 -+ b

no
I

sword- S@RTb

Is sword = O?

Yes +
I b-1 + b

Figure 31. DTREE Subroutine

68

produces a t e n t a t i v e SORT table en t ry , which is then added t o t h e c u r r e n t
sec t ion of the SORT tab le , on ly if no iden t i ca l en t ry a l r eady exists t h e r e ,
SORT e n t r i e s are added s o as t o maintain ascending sort order within each
sec t ion , and section brackets (zero-words) are maintained a t the top and
bottom of each section. (The bot tom bracket of each sect ion a lso serves
as the top b racke t o f the next sec t ion .)

A SORT en t ry i s i n two pieces:

1. SORTL, t h e l e f t ha l f -word , conta ins l eve l (re la t ive t o t h e
l eve l o f en t ry which i s ass igned leve l 11, followed by

the charac te r def in i t ion .
P,

2. SGRTR, the r ight half-word, contains p.

Thus, where a p p l i e d t o e n t r y DTREE adds SORT entr ies for each unique

dict ionary character of which en t ry i s a component s t roke . The uniqueness
P

tes t dis t inguishes , for example, between a 2-stroke and a +stroke "N".

P'

Once t h e f i r s t - l e v e l SORT sect ion has been b u i l t , OPTIMIZE a t tempts to op t imize
successor "famiiies" of dictionary entries. For each family it first a b s t r a c t s
a f i rs t - level equivalence group from t h e SORT table, and then goes on t o group
the d i c t iona ry successo r s , a t a l l l eve l s , o f members of the group.

The p rocess t o form a group, a t any l e v e l , i s t h i s : The f i r s t group member
i s tha t r e f e renced i n SORTR of t he f i r s t en t ry o f t he app ropr i a t e SORT t a b l e
section. Additional members a r e added t o t h e group where they a re found to
be paired (in SORTR) with a SORTL t h a t i s a l so pa i red wi th an ex is t ing group
member, A s i t e r a t i o n s a r e made through the sect ion, SORT e n t r i e s t h a t
reference members of the group are deleted in such a way t h a t when the search
i s exhausted, the remaining entr ies in the sect ion (and the bot tom bracket)
have been compacted upwards.

A s each group i s formed, an entry in the GROUP t a b l e i s constructed, GROUP
en t ry i s never used; the f i rs t - level group goes into entry and each

successor group into the next avai lable entry. Items GSLink and GNLink are
used to l ink the var ious g roups (nodes o f the g roup t ree) . GSLink p o i n t s t o
a group's f i r s t successor group; each group in the successor chain points
t o t h e n e x t l i n k i n i t s GNLink. Item GChain i s t h e head of the group's
membership chain; it p o i n t s t o t h e d i c t i o n a r y l o c a t i o n o f t h e f i r s t g r o u p
member. Each member i s l i n k e d t o t h e n e x t member i n - i t e m DGLink in the ex tended
d i c t iona ry (t ab le DICTE). Item DGroup (a l s o i n DICTE) po in ts , fo r each member,
t o t h e GROUP t a b l e e n t r y of i t s group. Item Ch conta ins the g roup ' s charac te r
d e f i n i t i o n .

0 1 9

69

6.16.5.2 ADDGR~UP Subroutine

ADDGRGUF (see Figure 32) adds a new member t o t h e f r o n t of a group's membership
chain, It a l s o sets t h e new member's DGroup, and updates the group's Ch. If
Ch s tsr ts as a it i s replaced by t h e d e f i n i t i o n o f t h e f irst new member t h a t

has a Ch . Subsequent addition of a new member with a d i f f e r e n t c h a r a c t e r
d e f i n i t i o n makes the group ambiguous. For ambiguous groups a t o ther than
t h e first l eve l , an immediate abor t i s made. To ensu re t ha t a l l members of
an ambiguous f i r s t - l eve l g roup a r e removed from t h e SORT table , the group 's
Ch i s set t o al; it remains so un t i l t he g roup i s completely formed, a t which

time an abort i s made,

0 2 9

An abor t d i scont inues p rocess ing of the cur ren t fami ly , The conten ts o f the
GROUP and SORT t a b l e s beyond t h e f i r s t sec t ions are disregarded, and processing
of the next family i s i n i t i a t e d by forming a new f i r s t - l e v e l g r o u p i n t o GROUP
entryl.

Upon formation of an unambiguous group, addi t ional groups are formed i n t h e
following order:

1. The DTREE subroutine processes r:wh member of the g roup jus t
completed t o form a SORT s e c t i o n a t the nex t l eve l . If t h i s
s ec t ion i s empty, con t ro l pas ses t o s t ep 2. Otherwise, the
l e v e l i s stepped down, and a group i s formed from t h e new
sec t ion to begin the successor cha in o f the g roup jus t made.

2. If t h e SORT sec t ion a t t h e c u r r e n t l e v e l i s not empty, another
group i s made a t t h i s l e v e l , and added t o t h e f r o n t of t h e
successor chain of the most recent group formed a t the p rev ious
l e v e l , If t h e SORT sec t ion at t h i s l e v e l i s empty, however,
t h e l e v e l i s stepped back up, and s t e p 2 i s re-entered.

The process s tops when s t e p 2 i s entered and l eve l i s 1. That i s , t h e t ree i s
completed when the next g roup to be made i s a f i r s t - l eve l g roup . To f a c i l i t a t e
group l inking and level s tepping, table LTAB i s maintained during the grouping
process. Indexed by l e v e l , LTAB en t r ies contain i tem LSORT (which po in ts to
the top bracket of the corresponding SORT s e c t i o n) and item LGroup (which
p o i n t s t o t h e GROUP table en t ry f o r t h e most recent ly formed group a t each
l e v e l) .

70

F=l
Set Return

GChain + DGLinkt

t r IS ChK = ul o r D e f '= u o r Ch = Deft?
~ ~~

t 2 R I

ri Return

no

I

yes n'0

t
Return

yes

J

% I Return

ABORT

BPTIMIZE

Figure 32. ADDGRgUP Subroutine

71

I I 11111 1111111II 111 II

A group tree which survives to this point has been constructed by the application
of only the first two equivalence rules. To apply the identity rule, OPTIMIZE
now calls procedure GTREE to step through the tree structure, applying procedure
GCHECK to each group.

6.16.5.3 GTREE Subroutine

GTREE (see Figure 33) steps through the tree, beginning with the first-level
group, in this order:

1. Down to the next level, to the group pointed to by GSLink,
'but if GSLink is zero, then:

2. Across to the next group pointed to by GNLink, but if GNLink
is zero then:

3. Back up a level, then proceed to step 2.

GTREE is finished when all nodes have been processed. To facilitate stepping,
GTREE uses the LEVEL table, in which item LThis points to the current node at
each level.

6.16.5.4 GCHECK Subroutine

When GCHECK (see Figure 34) is applied to GROUP it makes identity comparisons
between each member of GROUP and all next-level dictionary successors to the

members of GROUP the parent group of GROUP . (No member of GROUP that
has been marked as identical is used as a basis for comparison, however, and
no nember of GROUP is compared with itself.) When an identical dictionary
entry is found, it is marked by having its DEQ in the extended dictionary point
to the dictionary entry to which it is identical. If the identical entry is
not also a member of GROUP it belongs to another group GROUP^) which is
also a successor to GROUPx. In this case, GROUPi is merged with GROUP , (But

if the Ch's of these two groups are in conflict, the merged group would be
amblguous, and an abort to begin processing the next family is made.) Steps
in the merging process are:

8'

g

X' g 8;

8

g'
g

1. GROUP. is deleted from the chain of successors to GROUP,, and

the linkage is closed (note that because of processing order,
GROUP. is further along this chain than GROUP and has not yet
been processed by procedure GCHECK).

1

1 R'

72

Set Return

Set l o c of SBR - Enter SBR

I iO y e s

-i u Is g = O?

& ' Is R = l?
nb yes

I

Return

Figure 33. GTREE Subroutine

73

I
Y:"

1 4 DGroupt * i

CSLinki * t

Is t = O?

Gchnini * t

DGLink * i

CSLink * GllLinkt CBLinkt * t

CSLinki * GSLink

Figure 34. GCHECIC Subroutine

74

2. If GROUP. has a non-empty successor chain, then GROUP I s

successor chain is appended to it, and the pointer GLink
R

is made to point to the first link of the combined chain,

1

1 g

3. The chain of members of GROUPi is inserted into the chain of
members of GROUP immediately following the link which is
currently the basis for comparison.

I3

4. The DGroup of each member of GROUPi is changed to reflect
membership in GROUP

g'

5 . If GROUP ' s Ch is a2, it is replaced by Ch
% i'

Note that the GCHECK subroutine does not operate on the first-level group
(GROUP1); it has no parent group.

If a tree survives to this point, the dictionary entries associated with it
are then optimized. OPTIMIZE again calls procedure GTREE to step through
the tree, but this time applying procedure RELINK to each group.

6.16.5.5 RELINK Subroutine

RELINK (see Figure 35) applied to Aroupg first considers the set of dictionary
entries formed by the union of the members of all groups on GROUP ' s successor
chain. Each member of the set that has been marked as identical by GCHECK is
processed in the following way:

P;

1. It is eliminated from the set.
2. Its recognition count is added to the recognition count

of the dictionary entry to which it is identical,
3. It is marked for subsequent deeltion. Its DMark in the extended

dictionary is set "on", and the deletion signal (item CP) is
also set "on",

The remaining members of the set are linked together in the dictionary as the
successor chain to e m e m b e r of GROUP SLink of each member of GROUP points
to the head of the chain (SLink's are zero if the set is empty), and members of
the chain are linked to each other by their NLinks.

€5' 6

75

4 Is c = O?
no

Set Return

t
GSLink + c

O + t
g

I ye:

k

ri? GChain + c

Y
CChainc + p

I

I

Is c = O?

no Yes

1

t
DEQP +

t f

Is i = O?

no Yes
I 1 -

Rc.+Rc -+ Rci t + NLink 1 P P
1 + CP P + t

1 + DMark P ,
-

v
DGLink + p

P
Is p = O ?

no yes I I

E 5 Return

Figure 35. RELIMK Subroutine

'76

Finally, RELINK replaces the character definition of each member of GROUP

with the group's Ch. Actual redefinition takes place when a member is ax1
intermediate stroke and Ch is a defined character.

When relinking is finished, OPTIMIZE begins processing the next family. If
at this time, or after an abort, the SORT table first-level section is empty,
all families have been processed. Before exiting, if the deletion signal is
on, OPTIMIZE calls the COMPACT subroutine (see above) to delete those dictionary
entries that were marked by RELINK.

77

ADDENDUM A: GLOSSARY OF MEJEKONICS X D ABBREVIATIONS

A(S)

A I

BINK

C

c c ode

cbeg, cend

ai l

Ch 0

CHSW

MEANING

These l e t t e r s a r e u s e d t o
des igna te ind ices in the
usual programming sense
of p o i n t e r s t o t a b l e
e n t r i e s o r i t e r a t i o n
counts.

Result of processing an
input s t roke.

A pr imary s t roke feature-
loop, i n f l ec t ion po in t #

or corner .

Origin of t a b l e t i n p u t
i n t o t h e d i s p l a y buffer
used t o s e t INKflRG.

Rejected point count.

S ingle fea ture s torage ,

Beginning and end
poin ters .

Def in i t ion assoc ia ted
with a group.

Symbol used t o d e s i g n a t e
a member of the output
cha rac t e r s e t .

The program swi tch in
SAMPLE tha t con t ro l s
program flow and the
meaning of user act ions
a t t h e t a b l e t . CHSW may
be s e t t o "D" meaning "a
defined character has been
output or a new d e f i n i t i o n
added t o t h e d i c t i o n a r y " ;
N , meaning " there i s no

78

REFERENCE

SAWLZ, TEST, ANALYZER STRgKE,
BOTH, DEFIME, SEARCHF, SEARCHS

XWER

S.k!!PLE TEST

G R I D , STRmKE

XGVSR

XGVER, MINPTS

ADDGROUP, GCHECK, 3ZLINK

SAMPLE TEST

SMPLE

TERM - MEANING

inpu t " (t h i s is t h e i n i t i a l
condi t ion and the condi t ion
a f t e r a "clear") ; "u" meaning
" there i s an undefined input
pending; and "R" meaning
" the funct ion but ton REDEFINE

'has been pushed"

REFERENCE

Ind ica to r fo r d i r ec t ion o f
r o t a t i o n ,

X@VER C I

Test value for index , S T R ~ K E c i x

c t

D

Rejected point count ANALYZER

Dic t ionary po in te r resu l t ing
from search.

ANALYZER, DEFINE, SFARCHF,
SEARCHS

def Output de f in i t i on i n each
d ic t ionary en t ry .

DEFINE, SEARCHF, SEARCHS,
PURGE, MERGE, DTREE, ADDGRgUP,
RELINK

def n Indica tor for success o r
fa i lure o f adding new ent ry
t o d i c t i o n a r y .

DEFINE MERGE

DEQ

DGlink

P o i n t e r f o r l i k e e n t r i e s i n
dict ionary.

GCHECK RELINK

OPTIMIZE ADDGRBUP , GCHECK,
RELINK

Po in te r i n to DICTE.

DGroup

D I

d i s t

Class i f ica t ion for g roupings . OPTIMIZE, GCHECK

Center diamond dimension, B@TH

Square of t he d i s t ance between
two poin ts

MINPTS

DLIST The l inked l is t of output
cha rac t e r s i n TEST containing
s i z e and posi t ion information
and the r e l a t ive l oca t ion o f
t h e a c t u a l c h a r a c t e r i n IME3
o r DB.

TEST

79

- TERM

DLO@

DMARK

E

ecode

F

FB

f c

G

GChain

GKink

GSLink

h

H

I

MEANING REFERENCE

Poin ter to next ava i lab le DEFINE , SEARCHF, PURGE
first s t roke loca t ion in COMPACT
dictionary.

A f lag. PURSE , C@MPACT , RELINK

Part of feature s t r ing. ANALYZER, DEFINE, SEARCHF,
SEARCHS, MERGE, GCHECK

Single generated feature INFLEX
storage.

1) Fil ter constant set by SAMPLE, TEST, G R I D
SAMPLE and TEST for use
by GRID.

2) Part of generated feature ANALYZER, DEFINE, SEARCHF,
s t r ing . SEARCHS, MERGE, GCHECK

Abbreviation for "function SAMPLE, TEST,
button"

Feature count. BOTH, APUT

Geometric re la t ionship
between strokes of a
multi-stroke character,

ANALYZER, DEFINE, SEARCHD,
SEARCHS, MERGE, GCHECK

Pointer into dict ionary. OPTIMIZE, ADDGROUP, GCHECK,
RELINK

Poin ter in to GROUP table . OPTIMIZE, GCHECK, RELINK

Poin ter in to GROUP table . OPTIMIZE, GTREE, GCHECK,
RELIMK

Heading computed between two STROKE
points by DIRQ.

Upper limit for t e s t i n g INFLEX
curva ture in in f lec t ion po in t
computation.

Indicator for primary stroke STROKE, B@TH
features: corner , inf lect ion
point , or loop.

80

TERM - REFERENCE

SAMPLE

MEANING

ILW

IMl3

INKLW

Coordinate location on display
surface for output messages.

Input memory bu f fe r fo r d i sp l ay
refreshing.

G R I D , SAMPLE, TEST

The cu r ren t r e l a t ive l oca t ion
i n IMB f o r "ink".

G R I D , SAMPLE, TEST,
ANALYZER

INK~RG

k

The r e l a t i v e l o c a t i o n t h a t
"ink" i s t o s tar t i n IMB.

SAMPLE, TEST, ANALYZER

Flag used t o i n d i c a t e
exis tence of an i n f l e c t i o n
point .

INFLEX, B@TH

KB

KCB

Abbreviation for keyboard
button . SAMPLE

Abbreviation for keyboard
change button.

SAMPLE

Lower limit f o r t e s t i n g
cu rva tu re i n i n f l ec t ion
point computation.

INFLEX

Pointer used for terminat ion
of processing.

PURGE, MERGE L L a s t

LSort

Lthis

mdist

Po in te r i n to SgRT t a b l e . ~~PTIMIZE

PURGE, MERGE, DTREE, GTREE,
GCHECK

MINPTS

Pointer used for var ious
purposes .
Minimum value of square of
computed d is tance between
two points .

The p o i n t e r t o t h e n e x t s t r o k e
at t h e s a v e l e v e l i n t h e l i s t
of successor s t rokes in the
dict ionary.

DEFInJE , SEARCHS , PURGE,
COMPACT, MERGE, DTREE ,
GCHECK , RELINK

NLink

Number of strokes. G R I D , ANALYZER, DEFITJE rJ s

81

TERM -
PlV

PChar

MEANING

Overflow f l ag .

REFERENCE

MERGE

PURGE Output charac te r def in i t ions
t o be purged from dictionary.

pix

plim

PG

PSW

Test value for index. STRWX

XflVER, MINPTG

KERGE

G R I D

Test value for index.

Purge f lag.

RANE T a b l e t s t y l u s t i p
switch.

Feature s torage locat ion. X~VER

Test value for index. MINPTS

Minimum rectangle surrounding
argument; e i t h e r a f ea tu re o r
an en t i r e s t roke .

SRQLE, TEST, ANALYZER,

~ ~ A R C H D
INFLEX, B@TH, X ~ V E R ,

ANALYZER, B(bTH, SEARCHED Center of minimum rec tangle
(s e e R(x)) .

Rc Recognition count kept in
dict ionary for each success-
f u l match made with t h e
assoc ia ted en t ry ,

ANALYZER PURGE, MJIRGE,
RELINK

Symbol used to denote an input
s t roke ,

s SAMPLE, TEST

5-1, 52

s a v f z

Flags e PURGE

XgVER Temporary s to rage fo r f ea tu re
count .
Temporary s torage f o r index p. s avp

scrubf lae Flag used t o i n d i c a t e whether
o r not an input stroke i s t o
be in te rpre ted as an erasure.

sip, Flag. ~~PTIMIZE

82

SMflg

SP)RTL

SORTR

sw1

sw2

TERM MEANING

Size (x) Size (height and width) of

-
rectangle surrounding
argument (c a l l R(x)) .

SLink The p o i n t e r t o t h e first
. leg i t imate successor s t roke
for mul t i - s t roke charac te rs
i n a d i c t iona ry de f in i t i on ,

SLBC The p o i n t e r t o t h e n e x t
avai lable successor s t roke
e n t r y i n t h e d i c t i o n a r y .

Smoothing flag', set i n
con t ro l word of display buffer
in Input Memory t o enable or
disable smoothing.

Ent ry in SORT t a b l e composed
o f s t roke l eve l and associated
d e f i n i t i o n ,

Dict ionary pointer from SORT
t a b l e f o r SORTL item,

The program switch i n G R I D
t h a t i s set t o t h e a p p r o p r i a t e
func t ion acco rd ing t o t he va lue
of psw and T t h e time delay.

It has the va lue I G N , meaning
" ignore the t ab le t" ; TB, meaning
"post only the current posi t ion
o f t he pen i n IMB a t TB" ; and
I N K , meaning "filter and post
t h e p a t h o f t h e pen on t h e
t a b l e t as long as psw i s on
and there i s room i n t h e
buffer" ,

The program switch i n G R I D t h a t
enables or disables smoothing.
It has t he va lues of "on" and
"off' ' according t o SMFLG.

d B

REFERENCE

INFLEX, SEARCHD

DEFINE, SEARCHS, PURGE,
CflMPACT, DTREE, GCHECK,
RELINK

DEFINE, PURGE, COMPACT,
MERGE

G R I D , SAMPLE

P)PTIMIZE

Q~PTIMIZE

G R I D

G R I D

TEST

83

TERM PEANING - REFERENCE

t or temp A temporary storage. STROKE, OPTIMIZE
tbeg

'r D

TD '

TD*

Thresh

tmax

tmore

xtry

Pointer to the beginning of ANALYZER, STROKE
a stroke.

The time delay set in IMB by GRID
the calling program to specify
when GRID shall give up control
after a psw "off" is detected.
Time is specified in units of
.25 sec.

An intermediate storage for TD. GRID

The computed value for use by GRID
GRID to effect the time delay
test based upon a clock that
increments in units other
than .25 sec,

Recognition count threshold. PURGE
Dictionary entries with a
recognition count less than
the threshold are removed from
the dictionary,

Pointer to one beyond the last RXALYZER, STRmKE
entry of tablet inputs in DB.

Flag used for terninating ANALYZER
processing in TEST mode of
ANALYZER 1

Individual coordinates of GRID, STRflKE
points making up input
strokes stored in DB.

Individual coordinates of STRflKE, BOTH, INFLEX,
points making up input XOVER
strokes stored in PTS table.

Flag used to indicate success XWER, MINPTS
or failure of loop or inter-
section test,

84

ADDENDUM B: EXAMPLE OF OPTIMIZE

Figure B-1 represents a,sample dictionary before and after OPTIMIZE. Figures
B-2 through B-22 present the contents of the dictionary and other table(; at
successive stages of the optimize process. Strokes are represented symbolically
in the first column of the dictionary (labeled "Feature"); at each dictionary
level, strokes represented by the same symbol are identical. For this sample
dictionary, three dictionary entries are deleted, and nine new character
definitions are added. In the table below, entries above the double line
represent dictionary definitions before optimize, while entries below 'the
double line are those added by optimize.

Table B-1. Stroke Entries €or Sample Dictionary

85

.- .. .

0

1
2

3

534
5 05

0

0

511 I J M 0 1 508

a. DICT before optimize

4

Feature Def SLink mink
0 i i
1 0 0
2 I , 1 5 0 9 0

b. DICT after optimize

c. Tree Diagram of original Dictionary d. P e e of Optimized Dictionary

Figure B-1. Sample Dictionary Before and After Optimization

as

DICT DICTE

SORT

I i:
Figure B-2. Step 1. of Optimization

LTAE

3

The f i r s t - l e v e l s e c t i o n of t h e SORT t a b l e was made. M'RXE was appl ied to each
d i c t iona ry f irst s t roke (s t rokes 1-3). LSort points to SORTO, the t op b racke t

of the sec t ion . SORTG i s the bot tom bracket .
1

87

DICT DICTE

Feature Def SLink NLink DGLlnk DGroup DE9 DMark
~

"" ~

0 0
I

I 1 5 09 0 0 1

/ I =?
~

~

0 2

-
I 2 504 0
\ 2 507 0

..
U

U .

GROUP SORT LTAB

0 0

1 1

2 2 2

3 3 3
4 4 4
5 5

6
7
8

Figure B-3. Step 2 of Optimization

GROUPl was formed a t l e v e l 1; i t s members are s t roke and stroke2 (each i s the

first s t roke of a 4-stroke "14"). The group character i s '1'. L G r o u p l po in ts

t o GROUPl, the cur ren t GROUP en t ry a t l e v e l 1. The r ema in ing f i r s t - l eve l SORT

section has been compacted; SORT is now i t s bottom bracket. Note t h a t i f s t r o k e

had been defined as a d iv ide sign, the group charac te r would be "(J1", and f u r t h e r

work on t h i s family (Figicres B-4 through B-19) would have been aborted.

3

2 3

88

C R O W SORT LTAB

0 0

1 1 1

2 2 2

3 3 3
4 4 4
5 5

6
7
8

Figure B-4. Step 3 of Optimization

A second-level SORT section was made. "REE was applied to stroke and stroke2,

the members of C;ROUP1.
3

89

DICT DICTE

GROW

o>

1 0

4'
5 1

SORT

50rt1 Sortr

0 0 I O 1 0 0

LTAB

LGroup LSort

0 I O

2 : I

3 0 0 0 3
h 4

5-

Figure B-5. Step 4 of Optimization

11101

GROUP2 at level 2 was formed. Its members, stroke and stroke

the second stroke of a 4-stroke "M". GROW2 is a successor to GROUPl; its group

character is "a2'' .

509 506' are each

90

r -

DICT DICTE

GROUP

0
1

2

3
4

5

SORT LTAB

LGroup LSort

0

1 1

2 2

3 3
4 4

5
6
7
8

Figure €3-6. Step 5 of Optimization

A t h i r d - l e v e l SORT sec t ion was made. DTREE w a s app l i ed t o s t roke and

s t roke t h e members of mOUP
509

506' 2'

91

DICT DICTE

GROUP

0

1

2

3
4

5'

SORT

Figure B-7. Step 6 of Optimization

LTAB

1

2

3
4

GROUP was formed at level 3; its single member is stroke GROUP is a 3
successor to GROUP2; its group character is "N".

3 507

92

DICT DICTE

CROUP

0

1

2

3
4

5

Figure B-8.

SORT

1 50rt1 I Sor t r 1 1
0 0 1 0 1 0

2

Step 7 of Optimization

LTAB

LGroup LSort

1

2

3
4

A fourth-level SORT section was formed. DTREE was applied to stroke
only member of GROUP Stroke has no successors in the dictionary, therefore

the SORT section is empty.

507’ the

3 ’ 507

93

DICT DICTE

GROUP

Ch m a i n GSLinlc GNLink
0 0 1 0 l o l o

C I

Figure B-9.

SORT LTAB

LGroup LSort

0

1 1

2 2

3 3
4 4

Step 8 of Optimization

GROUP at level 3 was formed; its members are stroke and stroke

was added to the successor chain of GROUP2; the chain now contains GROUP

and GROUP The group character of GROUP4 is "0 " Stroke and stroke

are each third strokes of a 4-stroke I 'M' ' .

4 510 505' GR0up4
4

3' 2 ' 510 5 05

94

I I I I I ..I11 I 1

DICT DICTE

Def SLink NLink DGLink DGroup DE& Dkrk

I -i -7

GROUP

U
?
N
M . . -.

1 -5: 2

505 0 3

.! O . 0

Ch G N L i n k GSLink GChsin
L

0 r o 0 0 0
1

1 1 0 2 3
2 0 4 5 0 9 "2

1

4 p'+q"l
5

Figure B-10.

SORT

Sort1 Sortr

1

2
I I

3 - 0 0 0

7
8

Step 9 of Optimization

LTAB

LGroup LSort

1

2

3
4

A fourth-level SORT section was made. DTREE was applied to stroke and
stroke the members of GROUP4.

510

505'

95

"

DICT DICTE

I 2 504 0 0 4
/ O2 507 0 0 2

(J

-

I N 0 505 0 3
\ M 0 0 - 504 5 I

GROW

Ch G N L i n k GSLink CChain

0 0 0 0 0

1 1 3 2 0

2 a 2 5 09 4 0

SORT

0

1

2

3
4

5
6
7
8

Figure B-13. Step 12 of Optimization

LTAB

2

3
4

The SORT sections at levels 4, 3, and 2 are found to be empty, and the level
counter is stepped back to level 1. Formation of the first group tree is
complete.

98

I

DICT DICTE

Ch G N L i n k GSLink GChain

0

0 2 3 1 1
0 0 0 0

2 ' J 2 0 4 509
4

3 ,
3 5 510 4 = , 2

0 0 507 N

0

Figure €3-14. Step 13 of Optimization

Procedure GCHECK was applied to GROUP1, but performs no operation on a first-
level group. GCHECK was then applied to GROUP2; stroke was marked as
identical to stroke

506
509'

99

GROUP

ch m a i n GSLink GNLink

0 0 0 0 0

SORT

1 50rt1 I Sortr
1

0 1 0 1 0

1 - 1 1

0 1 0 0

1ta13

LGroup LSort

Figure B-15. Step 14 of Optimization

GCHECK was appl ied to GROUP4, the first successor to GROUP Stroke i n

GROUP (the other successor to GROW2) was marked as ident ica l to s t roke 3 510
i n GROW4. GROUP was merged with GROUP4, and entry of ,the GROUP t ab le i s

now dead (there a re no poin ters to it). The group character of QIOW4 was

changed from "0 '' t o "N" because GROUP I s character was "N".

2' 507

3 3

2 3

100

DICl' DICTE

GROUP SORT

r " Ch I GChain 1 GSLink I GNLink 1 I 50rt1 I Sortr

I 3 r-5 I 509 I 4 1 0

0

Figure B-16.

EEH 3 4

7
8 ee13
Step 15 of Optimization

LTAB

LGroup LSort

GCHECK was a p p l i e d t o GROUP Stroke w a s marked as i d e n t i c a l t o s t r o k e

GCHECK has now been appl ied to a l l groups i n t h e t r e e .
5' 504 508'

101

GROUP

Ch GNLink GSLink m a i n
""
""

0
0 2 3 1 1

0 0 0 0

1

2

3

SORT LTAB

t 1

1 LGroup I Mort I

"l 3 4

Figure B-17. Step 16 of Optimization

Procedure FELINK was app l i ed t o GROUPl. S t r o k e i n t h i s group was redefined

from "a I' t o t he g roup cha rac t e r "1". The d ic t ionary successor cha in to

members of GROUP contains only s t roke 509; s t roke which i s i d e n t i c a l t o

s t roke was not included in the successor chain, but was marked f o r d e l e t i o n .

3
2

1 506'

509'
The SLinks of both menibers of GROUPl p o i n t t o the comon successor chain.

102

GROUP SORT LTAB

0 0

1 1

2 2 2

3 3 3
4 4 4

5 5
6
7
8

Figure B-18. Step 17 of Optimization

RELINK was a p p l i e d t o GROUP2. The dict ionary successor chain t o GROUP2 members

contains s t roke and stroke510- Stroke which i s i d e n t i c a l t o s t roke

i s marked f o r d e l e t i o n .
505 5 07' 510"

103

DICT DICTE

GROUP F l GChain GSLink G N L i n k

Figure B-19.

SORT LTAB

2

3
4

Step 18 of Optimization

mINK was a p p l i e d t o GROUP4. Both menibers of GROUP4 (s t roke 5 10 and stroke 5 05

were redefined from "02" t o the group character "N". The dict ionary successor

chain which i s common to bo th s t roke and stroke contains stroke and

and strokeSll. StrokeSo4, identical to stroke5o8, was marked fo r de l e t ion .

RELINK was then appl ied to GROUP The successor chain for i t s members i s

empty. A11 groups have been relinked; processing of th i s d i c t iona ry f ami ly is
completed.

5 10 505 5 08

5'

104

DICT DICTE

/ N 508 5 05 5 05 4 510 1

\ M 0 5 1 1 504 5
\ 0 2 505 0 506 2

/ N 508 0 507 4

DICT SORT LTAB

0 0

1 1

2 2 2

3 3 3
4 4 4
5 5

6
7
8

Figure B-20. Step 19 of Optimization

Processing of the next dictionary family has begun. A new GROTJpl was formed
from the first-level SORT section. Strokel is the only member of this group.

105

DICT DICTE

GROW SORT LTAB

0

1 1

2 2

3 3
4 4
5
6
7
8

Figure B-21. S t ep 20 of Optimization

A second-level SORT sec t ion was made by applying DTRElF t o s t r o k e l , t he only

member of GROUPl. The SORT sec t ion i s empty, and the new group tree i s complete.

Because GROUP has no successor groups, G m E and REGINK are not operated, and

processing of t h e second family i s complete. The f i r s t - l e v e l SORT sec t ion i s
also empty, so there are no more d i c t iona ry families to p rocess .

1

106

DICT DICTE

k u r e

'
mark DE& DGroup DGLink mink SLink D e f

0
1 0 a
2 0 5og 1 I

GROW SORT LTAB

0 0

1 1

2 2 2

3 3 3
4 4 4
5 5

6
7
8

F'igure B-22. Final Resul t of Optimization

Procedure COMPACT has been operated. Stroke5o4, stroke and stroke507 were
deleted. Stroke was moved down and became s t roke The SLink of s t roke

which pointed t o s t roke now po in t s t o s t roke 507'

506
505 507' 509"

505 '

107

I /

(l a s t page)

ADDENDUM C;: NEW TECHNOLOGY

I t i s d i f f i c u l t t o say wha t , i n pa r t i cu la r , abou t t h i s program l i e s wi th in
the realm of new technology. Rather than specif ic a lgori thms or solut ions
to nart icular problems, it i s the genera l approach tha t i s unique--the
" combination - - - - " . - . of ex i s t ing methodology t h a t is new.

A t -the actual working level of t h e program, two t h i n g s i n p a r t i c u l a r are
d i f f e r e n t from earlier approaches t o c h a r a c t e r r e c o g n i t i o n . One i s the f ea tu re -
extract ion technique, including corner-detect ion; the other i s t h e u s e of t h e
d ic t ionary t o provide separation between adjacent characters, instead of some
other measare.

108 NASA-Langley, 1969 - e CR-126

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D. C. 20546

OFFICIAL BUSINESS FIRST CLASS MAIL
NATIONAL AERONAUT1

POSTAGE A N D FEES

SPACE ADMINISTRA'I

POSTMASTER: If Undeliverable (Sect
Postal Manual) Do Na

"The nesonaulicnl and spnce activities of the United States shnll be
condmted so us t o contribate . . . to the expamion of hzman knowl-
edge of phenomena in the atmosphere nad space. The Adminis trat ion
shall provide for the widest prncticnble a~zd appropriate dissenzina,tion
of informntion concerning its nctivities nnd the res?& thereof."

-NATIONAL AERONAUTICS A N D SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monographs, data compilations, handbooks,
sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA Tecllnology Utilization Reports and N ~ ~ ~ ~ ,
contract or grant and considered an important
contribution to existing knowledge.

interest in commercial and other non-aerospace
npplications. Publications include Tech Briefs,

and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

