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ABSTRACT 

This  document  describes  a  program  for  recognizing 
hand-printed  information  in  real  time,  which  provides 
on-line  computer  users  with  a  means  of  inputting 
two-dimensional  information  as  simply  as  writing  with 
pen  and  paper.  The  program  operates  under  the  Time- 
Sharing  System  on  the &-32 computer  at SDC, and  uses 
a RAND Tablet  for  input  and  a  CRT  display  (rear- 
projected  on  the  tablet)  for  output.  Each  user  of  the 
program  builds  a  unique  character  dictionary,  based 
on  samples  of  his  own  input  characters.  For  each  user, 
the  program  currently  recognizes  about 100 different 
characters,  which  are  chosen  from  a  larger  alphabet 
by  the  individual  user.  This  document  describes  how 
the  recognition  program  interfaces  with  the  Time- 
Sharing  System;  what  functions  the  program  performs  in 
recognizing  hand-drawn  input;  and  how  the  character 
dictionary is constructed  and  tested.  The  report 
concludes  by  suggesting  that  the  character  recognizer 
will  realize  its  greatest  potential  by  being  applied 
to  problems  that  require  free-form  (rather  than 
linear  keyboard)  input. 
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1. INTRODUCTION 
For  the past f e w  years,  we'have  been  working a t  the  task  of   producing a program 
for   the  on-l ine  recogni t ion  of   hand-printed  characters  i n  real time. Our main 
goal  has  been  to  provide  the  on-line  computer  user  with a more f l ex ib l e   i npu t  
mechanism than now exists. Among the  primary  aims of research was t h e   a b i l i t y  
to   recognize a t  least 100 different   characters   (chosen from a la rger   a lphabet )  
f o r  a given  individual.  A descr ipt ion  of  our e a r l i e r   e f f o r t s ,  as wel l  as o ther  
work i n   t h i s  field, can be  found i n  references 1 through 9 in   the   b ib l iography.  

The method described  here is  un ive r sa l   i n   t he   s ense  that  it appl ies   the  same 
genera l   ana ly t ica l   t echnique   to  a l l  inputs .  It i s  not   universal   in   the  sense 
t h a t  it may not  recognize  inputs  provided  by one o the r   t han   t he   o r ig ina l   d i c -  
t i ona ry   bu i lde r .  Thus, t o   o b t a i n  optimum performance,  each  individual  user i s  
requi red   to   bu i ld  a dict ionary  based upon h i s  own inputs .  The system was 
designed  with  this   faci l i ty ,   and  dict ionary  bui lding  has   been made as pa in less  
as possible .  Though we do not   c la im  that  th i s  i s  the   u l t imate   in   on- l ine  
character  recognition, we do f e e l  t h a t  we have come close  to   achieving our 
principal  objective--namely a program t h a t  w i l l  recognize 100 charac te rs   for  a 
given  individual.  

The program we have  developed  operates  under  the  Time-sharing  System on the  
AN/FSQ-32 computer a t  SDC. The hardware required  for  our  recognition  system, 
i n   a d d i t i o n   t o  a reasonably fast d i g i t a l  computer,  includes a RAND Tablet  o r  
i t s  equivalent  for  input  and a CRT d isp lay   for   ou tput .  We have  taken  advantage 
of   the   fac t   tha t   the   Grafacon  l O l O A  (the  commercially  available  version of the  
RAND Table t )  was por ted   for  rear projection,  and  have bu i l t  t he   d i sp l ay  and 
t a b l e t  around a projection  system %hat provides a common input-viewing  surface 
[lo]. I n  use,   the  tablet   behaves much l i k e  pen  and  paper.  This l a t t e r   f e a t u r e  
i s  not   essent ia l   to   the   t echnique ,   bu t  we f e e l  that it a i d s   m a t e r i a l l y   i n  
achieving  the  close  coupling  desired i n  i n t e r a c t i v e  man-machine systems. 

2. DATA F'LOW AND CONTROL UNDER TSS 

The hardware f o r   t h e  SM: Time-sharing  System (TSS) cons i s t s  of two computers, 
a PDP-1 and the  Q-32, coupled  by a core  s torage  (cal led  Input  Memory)  common 
t o   b o t h .  A l l  interact ive  devices ,   including o w  Graphic Tablet Display  Console, 
are connected t o   t h e  Q-32 v i a   t he  PDP-1, which se rves   so l e ly  as an 1/0 pro- 
cessor   for   these  devices .   Inputs   f rom  the  tablet   are   processed  by  the PDP-1 
CPU on an   in te r rupt  basis. Output t o   t h e   d i s p l a y  i s  handled  through  an  inde- 
pendent   control ler   a t tached  direct ly   to   the  Input  Memory. Immediate  feedback 
i s  thus  provided  between  the  tablet   and  display so t h a t   t h e   u s e r  may see h i s  
ac t ions  as they  occur,  by  having  the PDP-1 s to re   t he   p rocessed   t ab l e t   i npu t s  
in to   Input  Memory in   the   a rea   reserved   as   the   d i sp lay ' s   buf fer .  

There  are  three  kinds of feedback  provided  by  the  tablet   in terface program i n  
t h e  PDP-1. The f i r s t  i s  negative--no  feedback a t  a l l ,  i nd ica t ing   t ha t   i npu t  
w i l l  not  be  accepted a t  that time.  Next,  there i s  feedback i n   t h e  form of a 



single  point  output,   updated  every 30 msec., i nd ica t ing  that input  'is allowed. 
The point  on the   d i sp lay  w i l l  represent  the present   pos i t ion  of the   s ty lus  on 
the t a b l e t  as long   a s   t he   t i p   swi t ch  in the s t y l u s  (which we c a l l  pen switch) 
i s  open. When the pen switch i s  c losed   by   p ress ing   the   s ty lus  on the t a b l e t  
surface,   the   sampling  interval   to  the F'DP-1 i s  decreased to 4 msec. 'The PDP-1 
then  s tores   the track or  path  of the pen i n   t h e   I n p u t  Memory d isp lay   buf fer  
a f t e r  f irst  smoothing  and f i l t e r ing   ou t   redundant   po in ts   ( these   func t ions  are 
explained  in detail below). To the   user  it appears as though "ink" were  flow- 
ing  from the t i p  of   the   s ty lus .  

The control  for  al lowing  input  resides  with the user s program ( i n  this case 
the  character   recogni t ion  program)  in  the Q-32. Communication  between the  
u s e r ' s  program and the  PDP-1 funct ions i s  handled  through TSS's Dispatcher, 
using  .reserved words i n  the Input Memory d isp lay   buf fer .  From the Q-32, the  
user-- in   addi t ion  to   a l lowing  or   disal lowing  input   (by  specifying a delay  time 
between % sec and 8 s e c   a f t e r   a t   l e a s t  one tab le t   input   has   occur red) - -a l so  
informs the  PDP-1  when t o   n o t i f y  the Q-32 system tha t  input i s  f in i shed  and i s  
waiting  to  be  processed  by  the user's program. As a defaul t   condi t ion,   the  
t ime  delay i s  ignored  by  the PDP-1 program i f  the   user  has f i l l ed  the a l l o t t e d  
a r e a   i n  the Input Memory d i sp lay   bu f fe r   t o   capac i ty .  

All in te rac t ive   user  programs  running  under TSS are scheduled  on  a  round  robin 
basis. The use r ' s  program i n   t h e  Q-32 i s sues  a request   for   tablet   input   through 
the  system's  Dispatcher with a Wait i n   o r d e r  t o  remain  synchronized with and i n  
cont ro l   o f   the   user ' s   ac t ions  a t  the  console.  When the  PDP-1 informs  the Q-32 
system  that  tablet   inputs  are  ready,  the  user  program tha t  requested  the  input 
(only one  can do so, because   the   t ab le t  i s  acquired as a pr ivate   device  by  that  
program) i s  taken  from  Wait s t a t u s  and is scheduled. The inputs  from t h e   t a b l e t  
a r e   t hen   d i r ec t ly   ava i l ab le  on a word-for-word basis from  Input Memory t o   t h e  
user   program.  In   addi t ion  to   the  actual   x ,y   coordinates   that   const i tute   the 
smoothed  and f i l t e r ed   " ink"  the  user   sees  on his display,   the  PDP-1 has  kept 
count  of  the number of   points   re jected  for   each  accepted  point   in   the  s t roke 
o r   l i n e .  This data  is  stored  along w i t h  the x, y   data   in   the  Input  Memory 
display  buffer.  Because the user may draw more than  one  s t roke  or   l ine ,   the  
beginning  of  each i s  uniquely  marked. 

The Q-32 processes  the  input from the tablet   as   determined  by what actions  were 
v a l i d   a t  the time. The input may be   in te rpre ted  as a  "button" push o r  as a 
s t r o k e   i n  a character ,   or   they may be   re jec ted  as i n v a l i d   f o r  the ex i s t ing  
s i tua t ion .  During that  Wne, the   user  w i l l  get   no  tablet   feedback,  thus 
informaing him tha t   input  w i l l  not be accepted. Upon completion of processing, 
the  display buffer i s  appropriately  updated,  the  Dispatcher is  cal led  request-  
i ng   t ab l e t   i npu t ,   r e - in s t i t u t ing  the user's  feedback,  and the Q-32 user program 
re-en ters  Wait s t a t u s .  

This, in   essence,   descr ibes   the  data  flow and  communication c a p a b i l i t i e s   a v a i l -  
able  for  using  the  interactive  Graphic  Tablet   Display  Console  within SDC's 
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Q-32 Time-sharing  System. Two control  programs, SAMPLJ3, used  for dictimary 
building,  and TEST, used  to  test  the  dictionary in a simulated  environment,  use 
the  communication  and  control  features  of  the  system  as  described  above.  The 
basic difference  between  them  is  the  interpretation  of  the input data;  this  will 
become  clear  when  they  are  discussed  below. 

3 .  THE RECOGNIZER PROGRAM 

3 -1 RATA INPUT REQUIREMENTS 
The  processing  programs  involved  in  the  character  recognizer  do  not  deal 
directly  with  raw  tablet  data.  Rather,  they  expect  data  that  has  been  pre- 
processed  in a particular  way  to  eliminate  redundant  points,  provide  as  smooth 
a path  as  poss'ible,  and  yet  retain  the  appropriate  level of detail  to  permit 
extraction of pertinent  features. 

The f'unctions  of  smoothing,  filtering and keeping  count of the  rejected  points 
has  been  relegated  to  the PDP-1 tablet  interface  program  for  reasons  of  effi- 
ciency  in  both  time  and  space.  Performing  these  tasks as each  point  interrupts 
the PDP-1 does  not  impose an undue  burden on that  processor  and  saves a great 
deal of buffer  space,  thus  extending  the  "ink"  supply. 

Smoothing  is  required  for  the  very  simple  reason  that  the  raw  data  track  from 
the  tablet  contains  certain  irregularities  due  to  the  discrete  nature  of  the 
grid,  the  view  angle of the  stylus  tip  (which  varies  as  the  pen  is  rotated  in 
the  hand  while  writing)  and  other  vagaries  of  electronics  such  as  poor  signal- 
to-noise  ratio  on  the  low-order  bits  of  the  coordinates,  particularly  the y 
coordinate.  figure 1 illustrates  rather  clearly  the  value of smoothing  when 
column "A" is  compared  with  column "B" . Columns "C" and "D" of  the  same  figure 
show  the  reduction  in  the  amount  of  data  received  versus  that  output by 
filtering  using a filter  constant of 3 .  In  most  cases,  it  is  obvious  that  the 
smoothed,  filtered  data  provides  the  more  desirable  inputs  for  processing. "he 
numerical  data  representing  column "Dl' of  Figure 1 (along  with  the  associated 
point  counts)  are  what  the  character  recognition  program  processes. 

The  smoothing  algorithm  is a rather  simple  one. An eight-point  moving  average 
of  the  raw  data  generates  one  smoothed  data  point. To start  the  process,  the 
first  input  point  is  replicated  eight  times. An alternative  choice  would  have 
been  to  wait  until  eight  points  had  been  input.  The  former  is  logically 
simpler,  and  (because  the  pen  is  moving  slowly  at  the  beginning of a stroke), 
no obvious  bias  has  been  noticed  because of this  choice.  Smoothing  may be 
turned  off by setting  the  appropriate  control  word  in  the  display  buffer. 

Filtering  and  counting  the  redundant  points  is  another  simple  process. It is 
applied  after  the  raw  data  has  been  smoothed.  The  filter  constant  can be set 
Into one  of  the  display  buffer  control  words,  and  can  have a value  between 0 
and 6 3 .  Zero  means  no  filtering.  (This  is  the  way  the  ray  data  in  Figure 1 
was obtained. ) By  trial  and  error, we have  settled on the  value of 3 for  the 
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FIGURE 1. EXAMPLES OF STAGES OF INPUT PROCESSING 
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filtering  constant  as  one  suitable  for  drawing  reasonably small characters 
while  minimizing  the  amount of input  data  to  be  processed. 

The  process of filtering  itself  compares  the  absolute  value of the  differences 
between  the  last  accepted  point  and  the  current  point  (output by the  smoother 
if  it is on or read  directly  from  the  tablet  if  it  is off). .If either I A x [  
or 1 Ay 1 is  greater  than or equal  to  the  filter  constant,  the  point  is  accepted; 
otherwise  it  is  rejected  and  the  point  count of  the  last  accepted  point  is 
incremented.  These  point  counts  are  used  in  (and  are  critical  to)  corner 
detection  as  a  measure of the  stylus  velocity  along  the  path.  The  filtering 
process  is  started  with  the  first  input pint of  the  stroke.  This  point  is 
also  uniquely  marked to identify  it  as  the  beginning  of  a  stroke. A l l  sub- 
sequent  processing of the  tablet  inputs  takes  place  in  the Q-32. 

PRIMARY (PATH) FEATURE EXTRACTION 

The  first  processing  of  the  stroke  information  extracts  what we  shall  call 
primary or path  features.  At  present  these  consist  of  corners,  inflection 
points,  intersections  within  the  stroke,  and  a  corrective  procedure  for re- 
moving small but  bothersome  "hooks"  that  occur  at  the  beginning or end of the 
stroke.  Although  all  of  this  processing  could be done  in  one pass of  the 
stroke  data,  the  program  would  be  extremely  complex.  Some of the  processes 
are  done  in  parallel;  however,  we  shall  consider  them  serially  for  clarity of 
exposition. 

The  data  received by the  routine  is an array  of  ordered  triples  that  are  made 
up  of the  x-coordinate,  the  y-coordinate and the  rejected pint count.  The 
first  step i s  to  convert  the  coordinate pints into  discrete  headings  (one  of 
thirty-two),  thus  making  the  stroke psition-independent . 
.It 

Values  assigned  to  the 32 directions can be  thought  of  either  as  simple 
integers  having  the  value 0 through 31, or  as  signed  two's  complement  four-bit 
fractions.  Thus  one  can  think  of  the  half  circle  beginning  at  the  zero  direc- 
tion  and  rotating  clockwise  as  increasing  in  value by increments  of 1/16, and 
decreasing  in  the  counter-clockwise  direction  by -1/16. In order  to  remain 
consistant  with  two's  complement  arithmetic,  the  value  assigned  to  the  direc- 
tion  half  way  around  from 0 equals -1. This  method  permits  differencing  the 
heading  using  the  arithmetic of most  computers  directly  and  has  the  advantage 
that  no  difference  can  exceed 1800 (-1) and  that  the  sign of  the  difference 
indicates  the  direction  of  the  path's  rotation  or  curvature.  The  differences 
themselves  can be thought  of  either  as  integers or fractions,  since  the  con- 
version  is a simple  scaling by a  power  of  two.  We  shall be consistent  here 
and  treat  all  things  concerning  headings  and  differences  as  fractions. 
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Simultaneously,  the minimum rectangle  surrounding  the  stroke is computed. The 
absolute  value of the  difference  of  the  headings  formed  by  the first th ree  and 
t he   l a s t   t h ree   po in t s   o f   t he   s t roke  ( i f  the   s t roke   a r ea  is  l a r g e  enough t o  
qua l i fy )  i s  t e s t ed   aga ins t  a ''hook" threshold.  If the   th reshold  i s  exceeded 
( the  current   value i s  5/16) the  offending  point  i s  removed from  the  stroke, 
thus  e l iminat ing  the "hook". 

We have t r i e d   s e v e r a l  schemes for   de tec t ing   corners .  A l l  have used bo th   l oca l  
geometry  and  velocity. Our best est imate   of   veloci ty  i s  the   r e j ec t ed   po in t  
count   suppl ied  by  the  f i l ter ing program,  which i s  actual ly   the  inverse   of   the  
veloci ty ,   s l ight ly   modif ied  by  the  smoothing  a lgori thm.  In   order   to  examine 
t h e   l o c a l  geometry  of the  s t roke,   adjacent   headings  are   differenced,  and  each 
d i f fe rence  i s  associated with the   po in t  common t o   t h e  two headings. Thus th ree  
p o i n t s   i n  a straight l i n e  would generate a zero   d i f fe rence   for   the   cen ter  
p i n t ,   r e g a r d l e s s  of direct ion.   In   order   to   determine  approximate  angular  
change  without   regard  to   direct ion  of   rotat ion,   one  need  only  look a t  t h e  
&solute   value  of   the  difference.   In  what follows we shall use  the  notat ion 
Ah to  denote   this   di f ference,   and 1 A h 1  t o   r e f e r  to i t s  absolute   value.  

The present   corner   detector  marks a point  as a corner i f  e i t h e r  i t s  ] A h 1  is  
greater   than 11/16 o r  i f  I hhi+Ahi+i I (that is, the  sum of the  current  and  next 
Ah) i s  grea te r   than  13/16 without  examining  the  local  velocity  (point  count).  
Otherwise, a point  i s  marked as a  corner if i t s  point  count i s  grea te r   than   or  
equa l   t o  8, or the  sum of i t s  p i n t  count and i ts  predecessor 's  p i n t  count i s  
grea te r   than  o r  equal   to  1 4  and t h i s  l a t t e r  sum is  a l s o  a t  least s ix   t imes  
grea te r   than   the  minimum point  count two  away (before   o r  after). There  are 
some involved  complexi t ies   for   those  la t ter   cases   that   determine  which  of   the 
two candidates i s  ac tua l ly  marked as a corner,  plus some poin t   re loca t ion  that  
i s  done when t h e   f i l t e r  has "rounded" a corner ,   bu t   these   a re   no t   appropr ia te  
for  th i s   d i scuss ion .  The parameters  used i n   t h e  above t e s t s  were a r r ived  a t  
empir ical ly   af ter   examining a grea t  many samples.  Unfortunately,  those  samples 
did not come from  a l a rge  number of  people,  but  they  have worked successfu l ly  
f o r  a va r i ed   s e t ,   i nc lud ing   bo th   l e f t -  and  right-handed  people. 

It should  be  noted  here  that  the  marking  of a point  as a corner   divides   the 
s t roke   i n to   s epa ra t e   pa r t s  from which the  shape  features  and in f l ec t ion   po in t s  
a r e   ex t r ac t ed   s epa ra t e ly .  If no corners   are   found  in  a s t roke ,   t he   en t i r e  
s t roke  i s  processed as a uni t   for   ex t rac t ion   of   shape   fea tures   and   in f lec t ion  
points .  

Inf lect ion  points   are   determined  using  the same heading  differences  described 
above. This i s  done by..summing the  Ah's f o r   t h e   e n t i r e   s t r o k e  and  noting when 
the  absolute  value  of  the sum exceeds 5/16. Only a f t e r  such an occurrence  can 
an inf lec t ion   po in t   occur .  This limit el imina tes   spur ious   in f lec t ions   in t ro-  
duced  by  minor  wiggles.  After  the  above  threshold i s  exceeded, the maximum 
and minimum values  of  the sum are  noted i f  the  difference  between  successive 
pa i r s   o f  minima and maxima i s  grea te r   than  3/8. If so, an in f l ec t ion   po in t  
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has  occurred  either  at or between  the  pair.  "he  usual  case  is  that  the  event 
occurred  at  the  minimum  or maximum, but  when  they  are  joined by  a straight 
segnent  (a  series  of Ah's equal  to zero), the  inflection  point  is  taken  midway 
in this  segment. 

We  have  not  solved  the  general  problem of finding  path  intersections  efficiently 
at this  writing.  Instead,  we look at the sums generated by the  inflection 
point  search  and  determine  if any part of the  path  qualifies  as a loop.  Then, 
if and  only  if  no  inflection  point  was  found in the  part  under  question, we 
perform  tests  within  the  general  area of the  stroke  to  determine if closure  has 
occurred.  We  hope  that a general  solution  to  the  problem of detecting  path 
intersections  will  be  more  useful  in  conjunction  with  shape  feature  extraction 
in improving.discrimination among  strokes  that  now  prove  somewhat  troublesome 
to handle  as  special  cases. 

3 - 3  SHAPE FEATURE EXTRACTION 
Over  the  past  several  years,  we  have  tried  various  methods  for  extracting fea- 
tures  describing  the  "shape1'  or  topology  (using  the  term  loosely) of a stroke. 
They  can be divided  into  three  general  classes:  local  minima  and  maxima,  area 
traversal,  and  curvature  measurements.  Each  has  its  merits  and  shortcomings. 
When  the  shortcomings  outweighed  the  merits  (as  was  the  case  with  the  local 
minima-maxima  method),  the  effort  was  discarded  from  f'urther  consideration as 
a basic  method,  though  we  attempted to  learn  from  such  failures  and  retain 
some  features  of  the  approach  that  might  lead  to  improvements  of  other  attempts 
with  other  techniques. 

The  area  feature  extractor,  which  has  already  been  documented  in  earlier  reports, 
is a case  in  point. Though the  technique  as a whole  was  not  entirely  satis- 
factory  because  it  was  sensitive  to  minor  variations  in  the  input  that dras- 
tically  changed  the  generated  description  (such  as  lengthening  or  shortening 
the  tail  on  the  input  character 'la"), it  had  characteristics  we  wished  to re- 
tain in  future  tries.  For  instance,  it  inherently  retained  the  basic  geometric 
relationsips  among  the  various  parts  of  the  stroke,  and  was  insensitive  to 
minor  variations  in  the  amount  of  curvature  in  the  various  parts  of  the  stroke. 
In  fact,  as  long  as  "faults"  such  as  hooks  did  not  generate  corners  or  inflec- 
tion  points,  they  did  not  perturb  the  results  at  all. 

On the  other  hand,  the  curvature  feature  was  insensitive  to  lengthening or 
shortening  ''tails", but  was  always  sensitive  to  minor  variations in curvature 
if  the  variation  occurred  at  the  separation  between  two  classes  of  features, 
such  as a "curve''  and a ''cup. I' We  had  solved  the  problem  of  retaining  geometric 
relationsips  between  the  features  by  adding a feature  that  described  the  rela- 
tionship  of  the  present  feature  to  the  collection  of  its  predecessors.  The 
details  of  this  extractor  appeared  in a prior  report. 
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The  most  recent  feature  extractor  is an amalgamation  of  area  and  curvature 
techniques.  The  stroke  is  segmented  into  smaller  parts  at  corners  and  (when we 
solve  the  processing  problem)  at  intersections, but  not  at inflection  points--as 
was  necessary  in  the  curvature  measurement  method.  Each  part  is  then  ''described" 
using  the  area  feature  method  with  some  minor  changes,  and  the  whole  is  tied 
together.  This  is  done by geometrically  relating  the  rectangles  used to gener- 
ate  the  description  for  the  parts  in  the same way  that  the  features  were 
related  in  the  curvature  extractor.  The  variations  to  this  technique  amount  to 
eliminating  the  central  diamond-shaped  area if an inflection  point  is  included 
in  the  stroke  part,  and  marking  the  inflection  point's  occurrence  instead;  if 
the  part or stroke is simply a straight  line,  the  generated  feature  string 
contains  only  the  end  point  areas.  This  latter  case is detected  when  the Ah's 
are  summed  while  looking  for  inflection  points,  The  same  procedure  permits us 
to  detect loops that  occur  at  the  beginning  and/or  end of a stroke,  and  to 
treat  them  separately.  To  clarify  the  above,  we  present  two  examples: a 
hand-drawn  eight,  and a hand-drawn  three. 

Figure 2 shows  the  data pints for  the  input  character  (the "g") and  indicates 
that  an  inflection  point  was  found  (the  circled  point),  plus  the  area  divisions 
of  the  minimum  rectangle  surrounding  the  stroke.  The  feature  string  produced by 
following  the  path  from  area  to  area  is  14512351.  The "I" indicates  that  an 
inflection  point  was  encountered  in  area 5; however,  since  it  was, all refer- 
ences  to  area 5 are  delected,  thus  producing  the  feature  string  141231.  The 
deletion  of  area 5 was  decided  upon  after  many  samples  of  strokes  were  analyzed 
for  variability,  and  it  was  discovered  that  almost all  of  the  differences  were 
in  the  area  in  which  the  inflection  was  placed,  plus  the  relative psition of 
area 5 with  respect  to  the  others.  Although  not  shown in this  example,  when 
the deletion of area 5 leaves  two  adjacent  features  with  the  same  area  number, 
one of these  is  also  deleted.  The  overall  effect  is a decrease  in  undesirable 
discrimination,  at  the  cost  of  extra  processing. 

The  hand-drawn  three  shown  in  Figure 3 illustrates  the  case  where  the  stroke  has 
been  divided  into  two  parts by the  discovery of a corner  (the  point  surrounded 
by a square).  The  rectangle  surrounding  each  part  is  computed  and  subdivided 
as  shown,  and  the  generated  feature  string  is  4123C4123G4.  The "C" indicates 
that a corner  occurred  between  the  two  parts;  the  "G4"  at  the  end  shows  the 
following  geometric  relationship  between  the  two  rectangles:  the  second  part 
is  immediately  below  the  first.  The  headings or  directions  used  for  geometric 
relationships  between  surrounding  rectangles is quantized  to  one  of  eight  as 
shown  in  Figure 4. The  overall  effect  of  this  approach  is  reasonably  consis- 
tent  shape  description  of  parts of a stroke  that  is  insensitive  to  minor  varia- 
tions  in  curvature,  while  retaining  the  overall  required  discrimination  and 
descriptive  content. 

3 -4 MULTI-STROKE  CHARACTERS AND INTER-STROKE  RELATIONSHIPS 
Being  able  to  extract  the  feature  content of each  stroke  only  solves  half of 
the  problem  for  multi-stroke  characters.  In  order not to  impose  restrictions 
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FIGURE 2: SAMPLE DATA POINTS 
FOR HAND-DRAWN "8" 

FIGURE 3: SAMPLE DATA POINTS 
FOR HAND-DRAWN "3" 

FIGURE 4: VALUE  ASSIGNMENTS FOR 
EIGHT QUANTIZED DIRECTIONS 
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or  constraints  upon  the  user  concerning  character  separation  and  to  make  the 
recognizer  truly  position-independent,  multi-stroke  characters  must be  dealt 
with  as a unit.  Therefore, we require  some  additional  information  about  the 
relationships  of  strokes  that make up the  character.  The  method  used  is  the 
same  as  that  used  to  describe  the  geometrical  relationships  between  the parts 
within a stroke.  Each  successor  stroke  is  related  to  the  collection of its 
predecessors by computing  the  relationship  of  the  appropriate  minimum  surround- 
ing  rectangles. A stroke  is  considered  coincident  with  its  predecessor( s )  if 
the  rectangle  centers  are  within a limit of one  another,  as  computed  from  the 
larger  of  the  two.  If  the  coincidence  test  fails,  the  center-to-center 
direction  is  computed;  on  the  basis  of  that  direction,  the  appropriate  edges 
are  compared  for  nearness  (based  upon  the  same  computed  limit)  or  overlap. If 
this  test  is  successful,  the  strokes  are  considered  near  (indicated by "N"); 
otherwise  they  are  far  (indicated by "F") from one  another.  The  position 
relation  is  composed of the  result of these  tests  plus  the  center-to-center 
direction  in  the  case of "near"  and  "far''  rectangles. In Figure 5 ,  the  posi- 
tional  relation  is  indicated by.the appropriate  letter  followed by an  arrow 
where  required. 

4. THE DICTIONARY 

4.1 DICTIONARY  CONSTRUCTION 
As stated  above,  each  user  should  build a dictionary  based  upon  samples of his 
own input  characters.  This  is  presently  done  using  the  control  program  called 
SAMPLE. In  the  dictionary-building  mode,  only  one  character  at a time  is 
input,  though  it  may  be  constructed  of  as many as 12 strokes.  When  the  user 
completes  his  input  (this  is  indicated by pausing a predetermined  amount  of 
time),  the  strokes  are  individually  analyzed,  that  is, a feature  string  is 
produced  for  each;  if  the  input  character  is  composed  of  more  than  one  stroke, 
the  positional  relationship  between  each  subsequent  stroke  and  the  collection 
of all of its  predecessors is computed. 

The  dictionary--as  it  exists--is  then  searched,  stroke by stroke,  for a match- 
ing  description.  If a complete  match  is  found  for  the  input,  the  associated 
output  character  replaces  the  user's  input  on  the  display,  thus  informing  him 
that  the  input  was  recognized.  If  no  match, or an  incanplete  match  is  made, 
the  user  is so informed.  He  then  defines  the  input by appropriately  indica- 
ting  the  output  character  he  wanted  to  associate  with  the  input;  alternatively, 
he may erase  the  input  and  draw  another  character. By defining  the  input,  the 
user  causes  the  program  to  add  the  missing  stroke  information  to  the  dictionary 
with  the  output  character  appended. 

In addition  to  the  feature  information,  the  dictionary  contains a recognition 
count,  set,  to  zero  when a new  definition  is  added.  Each  time a match  is  made 
for a definition,  its  recognition  count  is  incremented  by  one. 
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The  dictionary  minimizes  both  space  and  search  time,  while  retaining  the  essen- 
tial  stroke  relation  information.  This  is  done by constructing  the  dictionary 
as a tree  or  set  of  trees,  in  which  only  the  legitimate  successor  strokes  are 
linked  to  predecessors.  Figure 6 illustrates  the  dictionary-building  process. 
In Figure 6,  the  feature  strings  generated  for  the  strokes  are  represented by 
drawn  shapes,  rather  than  their  actual  numerical  representation.  The  dotted 
arrows  indicate  the  paths  that  the  search  routine is allowed  to  follow. 
Figure 6f illustrates  the  parsimony  that  this  type of dictionary  allows, 
namely,  it  contains  descriptions  of 11 strokes  and 9 complete  characters  with- 
out  ambiguity. 

As constructed by the  user,  the  dictionary  contains  not  only  the  input  char- 
acter  descriptions  and  definitions, it also  contains  implicitly  the  separation 
information  required  if  the  user  is  to  be  permitted to input  more  than  one 
character  at a time.  This  factor  is  essential  for  two  reasons:  First,  the 
user  can  input a natural  grouping  at  one  time;  second,  and  even  more  important, 
he  is  not  constrained  to  print  his  input  at  some  predetermined  bounded  area. 

Errors or ambiguities  can  and  do  occur,  because  some  characters are proper 
subsets  of  others,  and  legitimate  character  pairs  appear  to  the  program  as 
single  characters. To resolve  this  problem,  the  user  must  revert  to  single 
character  input. 

4.2 USER DICTIONARY  MANIPULATION 
In  addition  to  the  obvious  abilities  to  save  and  restore a dictionary  under 
user  control,  the  current  program  permits  three  other  capabilities:  purging, 
merging,  and  optimizing  multi-stroke  character  definitions. 

Purging  permits  the  user  to  delete  unwanted  definitions  from  the  dictionary  in 
one  of two ways.  He  may  delete all definitions  for a chosen  output  character, 
or he  may  purge  all  definitions  whose  recognition  count  is  below a threshold 
of  his  choosing.  There  is  no  restriction  on  the  number  of  times  the  user  may 
purge a dictionary. 

The  purging  is  done  as a two-step  process  that  is  the  same  for  either kind of 
purge-threshold or character.  During  the  first  step,  every  entry  in  the 
dictionary  is  examined  in  its  logical  sequence by beginning  with  the  first 
dictionary  entry  of  the  first  strokes  and  following all  links  (explicit  and 
implied)  to  their  terminal  node or leaf.  Every  entry  that  meets  the  purging 
requirement  is  marked  as  an  "intermediate  undefined"  entry  (replacing  the 
existing  character  definition  entry). 

On  the  second  step, a new  dictionary  is  built  from  only  those  entries  that 
terminate  at a leaf  with a legitimate  output  character. A l l  chains  of  entries 
that  are  all  "intermediate  undefined"  are  deleted,  as  long  as  none  are  cross- 
connected  to  legitimate  output  characters.  Conceptually,  the  process  is 
straightforward, but because  the  dictionary  is  not  constructed  using  the  stan- 
dard  technique  of an available  space  list,  the  actual  manipulations  become 
quite  complex. 
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Merging  two  dictionaries  is a straightforward  process.  The  dictionary  that  is 
to be added  is  treated  as  though  the  input  characters  were  input  one  at a time, 
as  in  dictionary  construction.  Each  complete  entry  (sequence of strokes)  is 
taken  one  at a time  from  the  incoming  dictionary  and  searched  for  in  the 
resident  dictionary. If a complete  match  is  found,  no  new  information  is 
added  to  the  resident  dictionary,  but  the  recognition  count  plus  one  of  the 
"new"  characters  is  added  to  the  resident  definition.  When a conflict  arises-- 
that  is,  when  the  feature  strings  from  both  dictionaries  agree  but  the  output 
characters  differ--the  user  must  make a choice  among  three  alternatives: (1) 
He  may  choose  to  use  the  resident  dictionary  definition; (2) the  definition 
from  the  incoming  dictionary  to  replace  the  resident  definition, or (3) neither. 
If  he chooses  neither,  the  resident  definition  is  set  to  "intermediate 
undefined".  If  any  instance  of  this  latter  occurs,  the  merge  program  calls  the 
second  step  of  the  purge  routine  to  clean  up  the  dictionary. 

The  optimization  process  is a way  of  recovering  space  in  the  dictionary by 
cross-linking  definitions  of  multi-stroke  characters  in a way  that  eliminates 
redundant  successor  stroke  chains  that  are  exactly  alike.  This  process  cannot 
easily  be  done  during  dictionary  construction  without  adding a great  deal  more 
structure  to  the  present  form  of  the  dictionary.  The  price  for  doing so would 
not  only  be  additional  space,  but  additional  time  during  searching. 

Optimization  is  done,  in a sense, by turning  the  dictionary  inside  out.  That 
is,  the  dictionary  must  be  examined  in  reverse  order:  the  last  stroke  in a 
chain  and  its  attached  definition  are  examined  first,  and all  last  strokes  at 
the  same  level  are  searched for an  exact  match.  If  such a match  is  found, 
obviously  one  of  the  entries  is  redundant  and  may  be  removed by linking  the  two 
predecessors  to  the  same  successor.  Before  it  is  actually  removed,  the  chain 
is  searched  backwards  to  determine  if  the  redundancy  continues.  If  such  is  the 
case, an entire  chain  may be removed,  as  long  as  no  definitions  are  destroyed 
in  the  process  and  no  ambiguities  are  created. 

The  process  continues  through  each  level  of  successor  strokes  until  no  f'urther 
redundancies can be  removed.  In  actual  practice,  the  dictionary  is  not  turned 
inside  out, but rather  it  is  searched  in a forward  direction  and  the  entries 
grouped  into  classes  which  have  the  same  number  of  strokes  terminating  in a 
leaf.  These  groups  are  then  processed  by  looking  first  for  matching  defini- 
tions  and  then  for  matching  feature  strings.  Because  each  definition  is  not 
necessarily a simple  chain,  great  care  is  taken  that  no  destruction  or mi- 
guity  is  created;  therefore,  if  any  deletion  is  in  the  slightest  way  question- 
able,  no  action  is  taken.  In  practice,  the  optimizer  has  worked  exceedingly 
well  and  actually  created.new  definitions  by  legitimately  linking  together 
combinations  that  did  not  appear  as  samples  during  dictionary  construction. 
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4.3 DICTIONARY  TESTING 
m e  present  implementation  permits  the  user  to  test  his  character  dictionary in 
a simulated  use  mode  under  control of a routine  called TEST. In order  to  better 
approximate a usage  environment,  this  routine  allows  the  simple  editing  func- 
tions  of  erasure  (one  or a group of characters ), and  single  and  multiple  char- 
acter  replacement. It does  not  provide  the  ability  to  insert  and  delete, 
primarily  because  it  is  not  line-  and  character-space-oriented,  but  rather  is 
oriented  toward  unconstrained  two-dimensional  input.  Thus  the  user  is  free  to 
draw  any  character  in  any  position at any  time.  Because  two-dimensional  nota- 
tions  utilize  character  size as well  as  position (for reasons of aesthetics  if 
not  meaning),  the  character  output  by  the  program  matches  the  user's  input  in 
both  size  and  aspect  ratio  as  closely  as  is  physically  possible. 

When  testing a dictionary,  the  user  is  not  constrained  to  writing  one  character 
at a time.  He  may  input  as  long a character  string  as  his  "ink"  supply will 
permit. This  is  the  only  way in which  the  inherent  character  separation 
mechanism  of  the  dictionary  can  be  tested. In this  mode,  the  dictionary's 
recognition  counts  are  incremented  for  each  successful  match  as  they  are  in 
the SAMF'LE routine. 

At  present,  if  recognition is not  acceptable,  we  have  no  way  of  using  the 
test  inputs  for  improving  the  dictionary.  Though  the  recognition  level  may 
appear  acceptable  in  the  dictionary-building  mode,  it  appears  that  one's 
actions  when  printing a single  character  differ  from  when  he  is  printing a 
string  of  characters.  We  are  planning  on  changing  the  dictionary  construction 
program  to  accept a string  of  characters as well  as  single  characters,  and--in 
addition--to  permit  retrieval  of  input  from  the  testing  routine  for  dicticnary 
additions.  This  should  speed  dictionary  construction  as  well  as  improve  its 
content. 

5. CONCLUSIONS AND RECOMMENDATIONS 
Given  the  appropriate  input  hardware,  computer,  and  system  interfaces,  on-line 
character  recognition  in  real  time  is  feasible.  That  it  can be  made  operation- 
ally  successful  when  used  by  randomly  chosen  individuals  has  yet  to be proven. 
We  have  constructed  dictionaries  of a large  number  of  characters  (approximately 
100) for  individuals  actively  engaged  on  this  project,  and  have  had  acceptably 
high  recognition  rates.  On  the  other  hand,  we  have  not  specifically  tested  the 
recognizer  to  ascertain  its  maximum  level  of  attainment,  nor  have  we  tried  to 
have  someone  unfamiliar  with  the  effort  build  and  test a dictionary  under  test 
conditions.  Demonstrations  of  the  system  for a number  of  visitors  have 
indicated  that  some  learning  period  is  required  before  an  individual  becomes 
thoroughly  comfortable  with  the  hardware,  the  program,  and  the  variability  of 
the  Time-sharing  System's  response  time. 

The economics of such a capability  is  another  area  that  has  only  been  cursorily 
examined.  It  is  obvious  that  the  cost of the  hardware  alone  precludes  the  use 
of character  recognition  as a simple  replacement  for a keyboard  console.  This 
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is  true  from  several  points  of  view.  First,  the  dollar  costs  of  the  two  kinds 
of  terminals  and  their  interface  requirements  make  the  keyboard  console  more 
immediately  attractive.  Secondly,  user  experience  and  capability  (given  that 
both  devices  are  doing  the  same job)  would  make  the  keyboard  console  the  more 
desirable  for  most  people.  Therefore,  the  payoff  (if  one  exists)  of  on-line 
character  recognition  lies  in  those  areas  where  input is either  impossible  or 
extremely  difficult to achieve  through  a  keyboard  console.  This  is  the  problem 
area  to  which  we  have  addressed  ourselves,  and  this  is  the  kind of capability 
we  believe  we  have  attained  with  the  present  version  of  the  recognizer.  Namely, 
for  a  given  individual,  we  can  provide  a  larger  character  set  tailored  to  his 
needs  than  that  available  through  a  keyboard--that  is,  the  character  set  is 
made  up of  his  own  choices  from  a  much  larger  set.  More  importantly,  for  the 
first  time  the  position-  and  size-independent  nature  of  the  recognizer  permits 
a  user  to  input  complex  two-dimensional  notations  of  practically  any  disci- 
pline  for  computer  processing.  This  job  cannot  be  done  easily  by  any  other 
method.  It is here  that  future  activity  must  take  place  in  the  development 
of systems  and  applications  that  require  free-form,  two-dimensional  character 
input. 

Our recognizer  is  far  from  perfect,  and  we  intend  to  continue  improvements  and 
explorations  into  other  techniques  and  approaches,  as  well  as  attempting to 
make  meaningful  use of our  current  capability  in the  near  future. 
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APPENDIX 

DETAILED DESCRIPTION OF THE  RECOGNIZER PROGRAM 

This  document  describes  a  program  for  recognizing  hand- 
printed  information  in  real  time.  This  program  provides 
on-line  computer  users  with  a  means  for  inputting  two- 
dimensional  information  into  a  machine  as  simply  as 
writing  with  pen  and  paper.  Operating  under  the  Time- 
Sharing  System  on  the Q-32 computer  at  SDC,  the  program 
uses  a  RAND  Tablet  for  input  and  a  CRT  display  (rear- 
projected  on  the  tablet)  for  output.  Each  user  of  the 
program  builds  a  unique  character  dictionary,  based  on 
samples  of  his  own  input  Characters.  For  each  user,  the 
program  currently  recognizes  about 100 different  characters, 
which  are  chosen  from  a  larger  character  set  by  the 
individual  user.  This  document  describes  in  detail  the 
various  segments  of  the  character  recognition  program  and 
their  interrelationships.  It  also  includes  program  flow 
charts  for  each  of  the  segments;  a  list  of  special  notation 
used;  an  explanation  of  tables  used  by  the  program;  a 
glossary  of  mnemonics and abbreviations  used;  and  an 
example  of  dictionary  optimization. 
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1. INTRODUCTION 

The  following  is a detailed  description of  the character  recognition  program 
as  of  February 1968. The  program  described  runs  under  the  SDC  Time-sharing 
System  (TSS)  on  the  Q-32  computer.  The  description  has  been  made  as  machine- 
independent  as  possible,  but  is  not  necessarily  independent of  the  system, 
though  one  need  not  be  familiar  with  the  intricacies of TSS to  understand  the 
program  description.  It  is  sufficient to  know that  all  interactive 1/0 is 
carried  on  through a PDP-1  computer  semi-independently  from  the  main  processor, 
the Q-32.  These  two  computers  communicate  through a 16,000 (48-bit)  word 
core  bank  (called  Input  Memory)  that  is  directly  addressable  by  both  computers. 
A block of  storage (1024 words)  has  been  reserved  in  this  core  bank  for  refreshing 
the  CRT  display  that  is  an  integral  part  of  the  Graphic  Tablet  Display  (CTD) 
console. 

A special  interface  program  has  been  included  in  the  PDP-1  for  the  RAND  Tablet. 
This  program,  called  GRID,  is  the  only  one  described  below  that  operates  in 
the  PDP-1;  all  others  operate  in  the  Q-32  under  TSS. 

2. ANALYSIS 

We  have  yet  to  institute  formal  testing  of  the  character  recognizer,  although 
several  people  have  successfully  used  the  program  during  investigation  of 
applications  for  the  technique.  The  primary  reason  for  not  formally  testing 
the  recognizer  is  its  continuous  state of change.  Corner  detection  has  been 
improved,  but  perfection  has  not  been  attained.  Intersections  (cross-overs) 
within a stroke  are  now  found  and  have  proven  valuable  in  eliminating  many  of 
the  ambiguities  that  bothered us earlier.  The  present  cross-over  computation 
is  time-consuming  and  we  believe  a  better  way  can  be  found.  The  feature 
extraction  method  itself  has  been  changed  markedly  and  the  resulting  improvement 
in  performance  has  shown  that  effort  to  be  worthwhile. All of  these  things 
delay  testing,  but  the  major  problem  in  testing  a  program  such  as  this  is 
designing  a  meaningful  test.  What  precisely  should  be  tested  and  to  whose 
satisfaction?  Should  a  random  sample  of  people  be  chosen  to  build  a  dictionary 
of some  chosen  subset of characters?  What  restrictions  should  be  placed  on 
dictionary  building,  total  number  of  samples,  maximum  number  per  character? 
What  is  acceptable  performance  and to whom?  How  should  the  subjects  be 
motivated,  toward  high  individual  performance  or  toward  "beating"  the  program? 
Who  should  do  the  testing  and  under  what  circumstances?  What  can  be  learned 
from  such  a  test?  We  feel  that  it  reasonable to have  answers  to  these  and 
other  questions  before  launching a testing  program  for  the  present  version  of 
the  character  recognizer  or  its  successors. 

Though  as  yet  not  rigorously  demonstrated,  the  original  goals  of  this  project-- 
we  believe--have  been  met.  Namely,  the  program  recognizes  at  least 100 charac- 
ters  for a given  individual,  though  probably  not  for  any  individual  chosen  at 
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random.  We  have  implemented  ways of manipulating  the  dictionary  of  character 
definitions  that  allow  purging  unwanted  portions  of  the  dictionary,  optimizing 
definitions  for  multi-stroke  characters,  and  merging  dictionaries  that  were 
created  separately. As yet,  we  have  not  found a way of optimizing  the  multiple 
definitions  for  single-stroke  characters  that  does  not  complicate  the  dictionary 
structure to a  degree  that  makes  new  definition  entry  and  searching  exceedingly 
time-consuming. 

3.  NOTATION 

Because  there  exists  little,  if  any,  standard  notation  in  either  the 'ield 
of programming.  or  character  recognition,  we  have  invented  notation  where  we 
felt  it  lent  both  brevity  and  clarity  to the presented  material,  and  have 
stayed  as  close  as  possible  to  "accepted"  representation  in a l l  other  cases. 

xy  or p 

dxy  or  hxy  or  exy 

- h 

Ah 

Represent  an  ordered  pair  of  coordinates;  usually 
provided  by  the  input. E is  used  when  it  will  not 
cause  ambiguity.  When  operations  or  functions  are 
applied  to p, they  are  applied  fully  to  both x and 
y.  Both  representations  may  be  subscripted,  either 
to  denote a particular  order  in  the  sequence  of 
coordinates  that  make  up  a  stroke,  or to identify 
a  unique  pair. 

Represent  the  signed  difference  between  two  pairs 
of coordinates, x -x 2 ,  yl-y2.  When  tests  or 
operations  are  performed  on  individual  members of 
the  pair,  they  are  separated  in  the  form Ax  and  Ay. 

Represents  the  heading--as  computed  by  the  function 
D I R Q  (Axy)--between two points.  The  values  are 
treated as signed  two's  complement  fractions  for 
computational  purposes. 

The  signed  difference  between  two  headings,  hl  and 

h2 The  sign  indicates  the  direction  of  rotation 
(minus  for  counter-clockwise  and  plus  for  clock-wise), 
and  the  magnitude  represents  the  amount of directional 
change.  Note  that  since  the  computation  is  done  on 
signed  two's  complement  fractions,  the  larqest 
change  that  can  occur is 180 , indicated  by  a -1 3 
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111 II I II I I II 

- S 

- f 

Min and Max 

Stands   for   s t roke .   In   our  program, a s t roke  i s  made 
up  of  the  ordered set  of   coordinates ,   p ,   input   to  
t h e  program  between the  sequence of pen switch on 
and  pen  switch  off. 

Stands  for   feature ,   Usual ly  it i s  only a port ion 
of  a s t roke.  

Used i n  their   usual   mathematical  meaning. When 
e i t h e r  i s  a p p l i e d   t o  a s t roke ,  S, t h e  x and y 
coordinates  are t r e a t e d  indepen(?.ently.  Therefore, 
min (p . ) means  min (xi)  and min ( yi) ; m a x  (pi ) has 

a similar meaning, 
1 

The  minimum rectangle  surrounding  the set  of   points ,  
2 ,  which may be a s t roke ,  S ,  o r  a subset of t h e  
s t roke .   Usual ly   tha t   subse t   tha t   cons t i tu tes  a 
f e a t u r e   f ( 2 )  is  obtained by computing M i n ( Z )  and 
Flax(Z) and i s  a pair   of   ordered  pairs   (x  min  'Ymin) * 

The center  of th2;inimum rectangle  R(Z). It i s  
a n  ordered  pair   x ,y .  It  i s  computed as 1 / 2 ( x  +x ),  min max 
1/2(Ymin+Ymax) 

An ordered  pair   of   di f ferences,  Axy, spec i fy ing   the  
s i ze   o f  an e n t i t y  A. It i s  usua l ly  computed  from 
R(A). The notat ion  used  in   the  f low  char ts  i s  
S ize  ( R ( A  ) ). It i s  computed as Axy=x "x max min' 
~ ~ = y ~ ~ ~ - y , ~ ~ .  Note tha t   bo th  AX and Ay a r e  2 0 .  

Stands   for   charac te r .  Ch i s  used t o   s p e c i f y  an 
output   character ,  and may only be a l eg i t ima te  
member of   the  output   character  se t  ( t h e   s e t  from 
which t h e   u s e r   d e f i n e s   h i s   i n p u t ) ,  Ch1 i s  used 
to   spec i fy   an   input   charac te r ,  and i s  a co l l ec t ion  
of from  one t o  n s t rokes ,  (so, s1 ... s,). 

0 

Represents  output from the  ANALYZER rout ine   o ther  
than a Ch@. Five  values  have  been  .used. They 
a r e  : 

= a s t roke  with  too many f e a t u r e s   o r   ( i n   t h e  
0 SAMPLE rou t ine )  a Ch' with  too many s t rokes .  
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a = a s t roke   o r   cha rac t e r   no t   found   i n   t he  
dictionary;  thus,   an  undefined  character.  

= a s t roke   o r   cha rac t e r   i n   t he   d i c t iona ry   t ha t  
ends a t  an  intermediate  node,  has no Ch@ 
at tached,  and i s ,  therefore ,   an   in te rmedia te ,  
undefined  character.  For  example, i f  t h e  
f i r s t  sample  provided t o  SAIPLE were a four- 
s t roke  I4 and t h e   d i c t i o n a r y  were empty, t h e  
f i r s t   t h r e e   s t r o k e s   e n t e r e d  would  have a u 2 
appended t o  them; t h e   f o u r t h   s t r o k e  would 
have t h e  Ch@ "MI '  appended as i t s  de f in i t i on .  

a = end  of  strokes or vacuous  stroke, 3 
ah = an inva l id   s t roke ,   def ined  as one f o r  which 

bx+Ly 220 f o r  any  adjacent   pair ,   p i ,  pl+l. 

a = an empty p o s i t i o n   u s e d   f o r   i n i t i a l i z a t i o n  
purposes. 

Represents  the ANALYZER output for S. A ( S )  may have 
0 as an  intermed'ate  value,   but i t s  f i n a l   v a l u e  i s  
always e i t h e r  Chh or a. 

4 .  TABLES 

Var ious   t ab l e s   a r e   r e f e r r ed   t o   i n   t he   fo l lowing   desc r ip t ion   (bo th   i n   t he   p rose  
and in   the   f low  char t s ) .   In   the   contex t   used   here ,   each   tab le  i s  made up of 
e n t r i e s  and  each  entry i s  r e fe r r ed   t o   u s ing   t he   i ndexed   t ab le  name. Each 
en t ry  may be made up of  items.  These  items are r e f e r r e d   t o   u s i n a   t h e   i t e m  
names,  and every  i tem  in   the same ent ry   has   the  same index as t h a t   e n t r y .  
I n  t a b l e s  whose en t r i e s   con ta in   i t ems ,  a r e fe rence   t o   an   en t ry   imp l i e s   t he  
co l l ec t ion  of i t e m   i n   t h a t   e n t r y .  For example, i n   t a b l e  GI?@UP, each  entry 
conta ins   the  two items LSort  and LGroup,  The statement  "Clear GROUPi" means 

t h a t  both  LSort  and LCroup are se t   t o   ze ro .   In   add i t ion ,   t he   s t a t emen t  

"Clear Table GROUP" means that  both  i tems  LSort  and LGroup in   every   en t ry  
are s e t   t o   z e r o .  

i i 

Table 1 i s  a l i s t  of  t h e   t a b l e s   u s e d   i n   t h i s  program. I t  inc ludes   the  names 
of the  i tems  in   each  table   entry and t h e  number o f   en t r i e s   i n   each   t ab l e .   In  
o rde r   t o   conse rve   co re   space ,   t he   t ab l e  S@RT overlays DB, and GR@UP overlays 
PTS. This  causes no c o n f l i c t   s i n c e   t h e  program i s  n c t  i n t e r a c t i v e  when those 
t a b l e s  (SORT and GROUP)  are in   u se .  
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Figure 1, vhich  shows'the  relationship  between  the  various  routines  of  the 
recognition  program,  also  contains  the  list  of  tables  that  each  routine  uses, 
and--following  the  table  name  in  parentheses--the  indices  used  by  that  routine 
(if  any)  to  refer  to  the  table  entries. 

Table 1, Tables,  Entries,  and  Items  Used  in the Recognition  Process 

Table  (Entry ) Name 
IMJ3 
DB 
PTS 

STRK 
DICT 
DICTE 
DICT* 

LEVEL 
GROa 
LTAB 
ATAB 
CTAB 

S#RT 

5. 

It  ems - 
X,Y,14,C 
X,Y,14,C 
X,Y,I,Ct,h,  h (Q overlays  Ct 

F,E,G,A(s) , D , R ( S )  ,E(S> ,R(f) 
F,E,G,Def,Rc,NLink,SLink 
DEQ,DGroup,DGLink,DMark,DT@ 
F*,E*,G*,Def*,Rc*,NLink*,SLink* 
SgRTL ,S#RTR 
LThis,LLast 
Ch,GChain,GNLink,GSLink 
LSort , LGroup 
AI  ,Abeg 
CI  ,Cbeg  ,Cend 

in  XflVER) 

PROGRAM  DESCRIPTION 

No. of  Entries 

1024 
1024 
300 

15 
512 
512 
512 

15 

15 
5 
10 

1024 overlays  DB 

150 overlays  PTS 

5.1 DATA  FLOW 

Ignoring  those  portions  of  the  implemented  program  that  are  used  for  testing 
and  debugging,  we  shall  describe  the  sequence  of  events  that  take  place  during 
the  execution  of  the  program.  The  flow  of  data  through  the  system,  including 
both  input  data  and  control  signals,  will  be  described. 

The  over-all  functioning of the  system  involves  three  hardware  units,  plus 
the  software  of  the  time-sharing  system.  The  three  hardware  units  are: 
(1) the  PDP-1  computer,  which  interfaces  and  buffers  all  interactive  input 
and  output; (2) the  Input  Nemory, a 16 K core  storage  module  of  48-bit  words 
that  is  directly  addressable  by  both  the  PDP-1  and  Q-32  computers;  and ( 3 )  the 
Q-32 computer,  a  large (65K 48-bit  word),  fast  (2.5-usec  cycle  tine) , general- 
purpose  digital  computer  on  which  TSS  runs. 

The  Input  Memory  can  be  directly readby an  object  program  running  under  the 
Time-sharing  System  in  the Q-32, but  only the  TSS  supervisor  may  write  in 
Input  Memory.  Because  there  are  no  user  programs  running  in  the  PDP-1,  there 
are  no  restrictions  on  its  use of Input  Memory.  (Note  that G R I D  is  considered 
to be a system  program,  not  a  user  program.) 

- 
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Figupe 1. Character  Recognizer  Routine  Relationships 



The Graphic  Tablet  Display  Cansole,  around which t h i s  program i s  constructed,  
in te r faces   wi th   the  above  hardware as fol lows:   the RAND Tablet  (Grafacon 
1010A) used fo r   i npu t  i s  connected t o   t h e  PDP-1 through a hardware in t e r f ace .  
Each time an input  i s  ready at t h a t   i n t e r f a c e ,   t h e  PDP-1 i s  in te r rupted .  
These interrupts   occur  a t  two d i f fe ren t   ra tes :   every  30 ms when t h e   t a b l e t ' s  
pen switch is  o f f ,  and  every 4 m s  when it i s  on. This  pen  switch on r a t e  is  
var iab le  between 1 m s  and 16  ms. The 1-ms rate cannot  be  handled  by  the PDP-1; 
samples g rea t e r  than 4 rns apar t  would not  provide  adequate  data,  

The CRT d isp lay   for   the   console  i s  d i rec t ly   connec ted   to   Input  Memory through 
another  hardware  interface. A block of  1024  words of Input Memory i s  reserved 
i n  a f ixed   p lace   for   the   re f resh   buf fer   o f   the   d i sp lay .  The in te r face   reads  
from t h i s   b u f f e r  and "pa in ts"   the   conten ts  on the  display  (cont inuously)  a t  
a r a t e  of approximately 32 frames  per  second. The d isp lay   re f resh  may be 
turned on  and off  manuaUye  then  on,  the  contents  of  the  102bword  buffer 
are shobm on the   d i sp lay   wi thout   regard   to   the   condi t ion  of o t h e r   p a r t s  of 
t he  system. 

To start the character   recogni t ion program, it i s  loaded  for  execution  under 
TSS v i a  a te le type   console   in   the  same way as any o the r   u se r ' s  program. The 
program then   quer ies   the   user  as t o   h i s   i n t e n t .  For  purposes  of  discussion, 
assume he  wishes t o  use  the tablet fo r   i npu t .  H e  i n d i c a t e s   t h i s   i n t e n t .  
The  program!' ( running   in   the  Q-32 under TSS) then   r eques t s   t ha t   t he   t ab l e t  
( i n   r e a l i t y ,   t h e  GRID program  of t h e  PDP-1, which i s  a system  routine,   not 
a user  program)  be  attached t o   t h i s   u s e r  as a pr ivate   device.   This   insures  
t h a t  a l l  inputs  from t h e   t a b l e t  are d i r e c t e d   o n l y   t o   t h e   u s e r ' s  program. 
The GRID program at  t h i s   p o i n t  is  most l i k e l y   t o  have SW1 set t o  I G N  (see 
Figure 2), though it may have  been l e f t  s e t   t o  TB, bu t   t ha t  w i l l  no t   a f f ec t  
program execution, The program then  generates  a d isp lay  image i n  
Q-32 core  consis t ing  of   three  pushbut tons  labeled "DRAW", "SAMPLE", and "TEST." 
Only t h e  la t ter  two concern  us here, This image block  a lso  contains  t h e  
appropr ia te   cont ro l  words t o   s e t   t h e  G R I D  program for   use-- that  i s ,  t o  set 
SWl t o  TB and ass ign   the  first r e l a t i v e   l o c a t i o n   i n  the buf fer  where GRID may 
s t o r e  i t s  inputs.   This  block  of Q-32 core  (which we s h a l l   r e f e r   t o  as DB) i s  
t r a n s f e r r e d   t o   t h e  Enput Memory d isp lay   buf fer  (which we s h a l l   c a l l  IMB) by a 
c a l l   t o   t h e  TSS Supervisor. khen TSS r e t u r n s   c o n t r o l   t o   t h e   u s e r ' s  program, 
it then   reques ts   input  from GRID and  goes i n t o  "wait" s ta tus   through  another  
supervisor   cal l .   This  means tha t   t he   ob jec t  program i n   t h e  4-32 w i l l  not  be 
run   aga in   un t i l   the  GRID program informs  the Q-32 that  input  has  been  completed 
and it i s  giving up cont ro l ,  

With G R I D  i n   c o n t r o l ,  the  user  nov pos i t i ons   h i s   r e f l ec t ed   pen   pos i t i on   spo t  
over   the "SAMPLE" Button  and  presses  hard enough t o   t u r n   t h e  pen  switch  on; 

"This rout ine  i s  no t   pa r t  of the   recogni t ion  program i t s e l f ,  and thus  i s  not  
documented here  ., 
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he  then  re leases   the  pressure  and  the  switch  goes  off .  GRID has   placed  the 
inpu t   po in t s   i n  IMB, so t ha t   t hey  are now a pa r t   o f   t he   d i sp l ay  image. The 
12-32 only  allows  space  for one input   point  by GRID. When it f i n d s   t h a t   t h e  
buf fer  is  f u l l ,  it c a l l s  TSS t o   t ake   t he   u se r   ou t   o f  "wait" s t a t u s ;  GRID then 
e s s e n t i a l l y   g o e s   t o  wait status i tself .  (If t h e r e  were more space   i n  IMB, 
con t ro l  would have  been  returned after a time  delay on  pen up of 1 / 4  sec.)  

The user  i s  informed t h a t  con t ro l  has r e t u r n e d   t o   t h e  Q-32 by the   l ack   of  
t h e  moving spo t   r e f l ec t ing   h i s   cu r ren t  pen pos i t ion ,   Bote   tha t  it i s  poss ib le  
t o   e n a b l e  GRID to   accept   inputs   wi thout   pu t t ing   the  Q-32 program i n t o  "wait" 
s t a t u s ,   b u t  we have  not t r i e d   t h i s ,  even  accidentally.  If t h i s  were done, t h e  
two programs ( G R I D  and t h e   u s e r ' s  program i n   t h e  Q-32) could  get   out  of 
synchronization and both  end u? w a i t i n g   f o r   e a c h   o t h e r ,   t h u s   e f f e c t i v e l y   k i l l i n g  
t h e  program. 

The Time-sharing  System  next takes t h e   u s e r ' s  Q-32 program out  of " w a i t "  s t a t u s .  
The program reads t h e  pen input  from Input Memory, decodes  the  coordinates 
in   t e rms   o f   bu t ton   pos i t i on ,   and   e i the r   r e j ec t s   o r   accep t s  them. If the input  
i s  r e j ec t ed ,  t!le program  simply  goes  back t o  t h e  beginning, rewrites Input  
Memory, c a l l s  G R I D  and waits. If t h e   i n p u t s  are accepted,   the  program named 
i n   t h e   b u t t o n  pushed ( i n   t h i s   c a s e ,  SAMPLE) i s  ca l led   and   cont ro l   passed   to  
it. 

SAMPLE generates  i t s  i n i t i a l  frame i n  DB. Having divided up the   buf fer   b lock  
appropriately,  it se t s   t he   t ime   de l ay  (TD) .to 2 seconds,  turns  the  smoothing 

f l a g  (SMFLG) on, c a l l s   t h e   s u p e r v i s o r   t o   w r i t e  DB i n t o  1 1 0 ,  c a l l s  GRID, and 
goes i n t o  "wait" s t a t u s .  

The user   next   sees  a new disp lay .  He  may then  push a b u t t o n   t o  change t h e  
keyboard  displayed,  or draw a c h a r a c t e r   i n   t h e   w r i t i n g   a r e a .  G R I D  r e a c t s  
t h e  same way as above. Assume t h a t   t h e   u s e r   h a s  drawn a character ,   say a ' I \  ' I .  

The user  should  then wait f o r  some response from t h e  Q-32 program t o  show on 
the  display  before  he  proceeds.  If he  inadvertent ly  starts t o  draw o r  push 
a but ton  before  G R I D  has  given up control ,   he  w i l l  add  information t o   t h e   i n ? u t  
t h a t  he has  not  intended and may--as a result--unknowingly  add a meaningless 
cha rac t e r   de f in i t i on   t o   t he   d i c t iona ry .  When con t ro l  i s  r e t u r n e d   t o  SAMPLE 
by the  system, it checks   the   va l id i ty  of the   i npu t  as a funct ion  of   both  the 
se t t i ng   o f  CHSW, and the   pos i t i on  of t h e   i n i t i a l  and f i n a l  coordinates of 
t h e   f i r s t   i n p u t   s t r o k e .  ( A  s t roke  i s  defined as 211 of   the   input   occur r ing  
between  per. switc!? on and pen  switch o f f ) ,  

Finding a va l id   s t roke ,  SMPLZ c a l l s  ANALYZER. The s t roke  is analyzed  and  the 
r e s u l t a n t   f e a t u r e   s t r i n g   s e a r c h e d   f o r   i n   t h e   d i c t i o n a r y .  Bote t h a t  when SWLE 
i s  i n   c o n t r o l ,  AIU-LYZER processes a l l  s t rokes   before   re turn ing ,  on the  assumption 
tha t  a l l  of   the   input   be longs   to  one charac te r .   S ince   the   user ' s   d ic t ionary  
is empty, the   input  will not  be  found, SAIWLE adds the spec ia l   cha rac t e r  "%lt 
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t o   t h e   d i s p l a y  image, r e l o c a t e s   t h e  INKORG so t h a t   t h e   i n p u t s  w i l l  not be erased, 
sets t h e  CHSW t o  U,  writes DB i n   t h e  IPrDB, c a l l s  G R I D  and waits. The user  must 
now "push"  one of  several   buttons.  If he draws another  character  or  pushes 
t h e  wrong but ton ,   h i s   input  w i l l  be erased and t h e  program w i l l  wait for   another  
input.  

After   complet ing  the  dict ionary,   the   user  makes an input a t  coordinate 0,O.  
This,   in  essence,   causes SAMPLE t o   r e t u r n   c o n t r o l   t o   t h e  program t h a t   c a l l e d  
i t - - the  control  program of  three  pushbuttons.  If the   u se r  were t o  make an 
input a t  0,O i n   t h i s   c o n t r o l  program,  he would r e tu rn   con t ro l  t o  t h e   t e l e t y p e .  

The d i f fe rence  between SAMPLE and TEST i s  t h a t   t h e r e  are no inva l id   inputs  
t o  TEST. Multi-stroke  inputs are not treated as a s ingle   charac te r .  

The a b i l i t y   t o   e r a s e   o r   r e p l a c e  an  output  character from the   d i sp lay  i s  not 
c ruc ia l   t o   t he   ob jec t ives   o f   t he  TEST. I ts  main function i s  t o  t e s t  the   user -  
constructed  dict ionary.  Replacement  and erasure were incorpora ted   to   p rovide  
a more realist ic  usage  environment,  and t o   c r e a t e  a be t te r  demonstration 

.vehicle.   Generating  an  output  character  of  the same s i z e  and a t  t h e  same 
pos i t ion  as the   input   charac te r  aids in  creating  the  proper  atmosphere,  These 
c a p a b i l i t i e s  were  added t o  TEST i n   o r d e r   t o   s o l v e  some of   the  known problems 
t h a t  w i l l  occur when the   charac te r   recognizer  i s  used as a t o o l   f o r  an a c t u a l  
problem solut ion.  

A l l  of the  information  concerning  output  character  posit ion,   size,  and loca t ion  
in   the   ou tput   buf fer  i s  p laced   in  DLIST, which i s  a simple  linked l i s t ,  e x t e r n a l  
t o  t h e  ac tua l   buf fer .  DLIST could  have  been  implemented i n   s e v e r a l  ways. The 
l inked l i s t  was a design  choice,  

If the  user  then  pushes "TEST", con t ro l  w i l l  be tu rned   ove r   t o   t he  TEST program, 
TEST s e t s  up DB i n  two port ions:  (1) a simple  linked l i s t  t o  minimize  wasted 
space   i n   d i sp l ay ing   a rb i t r a ry   cha rac t e r s   i n  5 x 7 dot  matrix  form,  and ( 2 )  a 
block  reserved  for  "ink". 

Assume t h a t   t h e   u s e r  draws 

C A T  
This   t akes   f ive   s t rokes .  When G R I D  r e t u r n s   c o n t r o l   t o  TEST, t h e   i n p u t s   a r e  
moved from IMB t o  DB, and ANALYZER i s  ca l l ed .  ANALYZER r e t u r n s   c o n t r o l   t o  
TEST i f  one of  several   events  has  occurred: (1) a l l  o f   t he   s t rokes   i n  DB 
have  been  processed; ( 2 )  t he   ma tch ing   f ea tu re   s t r i ng   i n   t he   d i c t iona ry   has  
no successor   s t roke appended t o  it; ( 3 )  the  next  stroke  processed  does  not match 
any  of the   successor   s t rokes   o r  it cannot  match a f irst  s t roke ;  ( 4 )  the   input  
has   too many fea tures   and  i s  thus  considered a "scrub"  or erasure, o r  it has 
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a noisy  point  and i s  consideTed  invalid. One o f   t h e   r e s u l t s   o f   t h i s   k i n d   o f  
i n t e rac t ive   con t ro l  i s  t h a t  a non-recognized  stroke  can  change  the "meaning" 
of  the  remaining  strokes from that   intended.  Each time ANALYZER r e tu rns   con t ro l  
t o  TEST,  TEST adds   o r   de le tes   charac te rs   in  DB; only when a l l  s t rokes   a r e  
processed  does  the  result   appear on the   u se r ' s   d i sp l ay ,   r ep lac ing   h i s  hand- 
drawn input .  If a l l  goes w e l l ,  the   user  w i l l  see  :-- :-.-: ?? appear a t  once on 

t..* t-i .f. 

the   display,   a l though  each  character  was p l aced   i n  DS as it was recognized  and 
returned by ANALYZER. 

To i l l u s t r a t e  what  can  happen i f  a s t roke  i s  not  found, assume t h a t   t h e   u s e r  
draws the  following: e ca 

f 

on t h e   t a b l e t  i n  the   o rder ,  c,n,-,-, 1 , and t h e  ANALYZER could   no t   f ind   the  
''0 " of   the "A" i n   t he   d i c t iona ry ,  The user  would s e e   e i t h e r  

.". ! .  ... 

... . .  . .  
r... 
.L. z 

1 
I 

t.. 

o r  

. .  .w 

L.' ..". 
e... .. 
. .. 

depending on where the   cen ter   o f   the  " f i t '  i s  w i t h   r e s p e c t   t o   t h e  two s t rokes  
tha t   a r e   no t   t aken  as a n  'I=". The f i r s t   o f   t h e s e  two i l l u s t r a t i o n s  shows the  
most l i ke ly   ca se .  

5.2 RESPONSE TIME 

We have  been able   to   provide  instantaneous  response i n  t h e  one c r i t i c a l   a r e a  
required--namely,  feedback  from  pen  inputs t o   t h e   d i s p l a y  so that   " inkrr   f lows 
from t he  "pen" i n  real time. 

Response  time f o r   t h e   u s e r  upon completion  of  input i s  D. function  of many 
var iables .   Natural ly ,   the  more in t e rac t ive   u se r s   t he re   a r e  on the  system, 
the   l ancer  5he de lays .   In   par t icu lar ,   the  more people  using  tape  and  disc, 
the  longer   the  delays.  Also, t h e  more input   there  i s  from t h e  t a b l e t ,   t h e  
longer   e re   the   po ten t ia l   de lays .  The e f f e c t  of t h i s   f a c t o r  i s  hard t o  measure 
because of the   o ther   var iab les ,   bu t   i f   the   p rocess ing   takes  more than one 
quant;;m of interact ive  user   t ime  (current ly   about  600 m s )  , t he   u se r  i s  swapped 
out and i s  a t  t he  bottom of t h e   i n t e r a c t i v e  queue f o r  one  cycle, 

30 



In   general ,  when t h e r e  are less than 20 other   users  on the  system,  response 
i s  acceptable  ( though  not  instantaneous).  When t h e r e  are more than 25 users  
on the  system,  response i s  slow  enough t o  be annoying; when t h e r e  are more 
than 30 users  on,   response can become in to l e rab le .  

If t h e  SDC Time-sharing  System  had  provisions f o r   p r i o r i t i e s  among t h e   i n t e r -  
ac t ive   users ,  some of  these  annoyances  could  be  lessened,  but it doesn' t  and 
so from time t o  time we w i l l  be  annoyed. 

6 .  

6.1 

DESCRIPTION  OF  PROGRAM  SEGMENTS 

G R I D  SUBROUTINE 

G R I D  i s  a program tha t   runs  on the  PDP-1 and  provides  the  interface between 
t h e  RAND Tablet  and t h e  Q-32 Time-sharing  System. 

A l l  communication  between G R I D  and t h e   c a l l i n g  program takes   p lace   v ia   the  
Input Memory Buffer (IMB). The cal l ing  progi-m  suppl ies   the  var iables  
(SMFlg, TD, F and I N K L O C )  i n   t h e   c o n t r o l  words  and G R I D  p l aces   t he   t ab l e t   i npu t  
da ta   ( ink)   in   the   buf fer   beginning  a t  t h e   l o c a t i o n   s p e c i f i e d   i n  INKLOC. The 
format  of  these  inputs i s  shown in   F igure  2. 

A flow  chart   of  the G R I D  subrout ine i s  shown in   F igu re  3. It i s  n o t   e s s e n t i a l  
t h a t   t h i s   r o u t i n e  s tar t  with SWI a t  I G N ,  s ince  the  t ime-out on TD guarantees 
t h a t  SWI cannot  remain i n d e f i n i t e l y   i n   t h e  TB p o s i t i o n   i f  any inputs  have  been 
made, r ega rd le s s   o f   t he   s t a t e   o f   t he  9-32 program.  Note t h a t   t h e  PDP-1 i s  
in te r rupted  a t  two d i f f e ren t   i n t e rva l s :  a t  4-ms i n t e r v a l s  when  psw (pen  switch) 
i s  on,  and a t  30-ms i n t e r v a l s  when  psw i s  o f f ,  

SW2 i s  s e t  when  psw i s  f irst  detected.   This  saves  both  t ime and  space, 
because  of  the way the  PDP-1 reads  Input Memory. The smoothing  algorithm 
(enabled when SW2 i s  set  t o  "on")  merely  replaces  the  oldest  xy wi th   the  one 
jus t   read ,   then  computes the  average xy as output.  The index j i s  operated 
as a r ing  counter ,  modulo 8. 

The f i l t e r  f a c t o r  F i s  another   of   the   var iables   suppl ied by t h e   c a l l i n g  program. 
A value  of 3 is  used   for   the  f i l t e r .  It w a s  a r r ived  a t  empirically  for  drawing 
very small charac te rs .  N s  i s  t h e  number of   s t rokes   input .   Unt i l   recent ly ,  
N s  has  not  been  implemented  properly,  thus it i s  used  only by time-out t e s t i n g  
i n  G R I D  and  not  by t h e  Q-32 routines.   Another  function  that   could  have  been 
included, had  space  been  available (t ime was no problem), i s  the  computation 
of   the minimum rectangle  surrounding  each  stroke,   R(S).   This would have  saved 
some time i n   t h e  Q-32 programs, a t  the   cos t   o f   buf fer   space   in   the  I N K  area.  
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6.2 SAMPLE  SUBROUTINE 

The  SAMPLE  subroutine  is  used to build  and  test  dictionaries  is a one-character- 
at-a-time  mode.  This  program  allows  only  one  action  at a time--drawing  a 
character  (multi-stroke  characters  are  allowed)  or  pushing  a  button. 

Figure 4 shows  a  layout  of  the  display  the  user  sees  when  this  program  is 
called.  The  user  can  then  select  one  of  five  keyboards.  The  five  keyboards 
contain (1) digits,  brackets  and  relationals; (2) upper-case  Roman  letters; 
(3) lower-case  Roman  letters; (4) punctuation  and  special  marks; (5) Greek 
letters.  The  keyboards  are  shown  in  Figure 5 as  they  appear to  the user. 
The  maximum  number  of  characters  per  keyboard  is 26. 

A  flow  chart  of  the  SAMPLE  subroutine  is  shown  in  Figure 6. Those  parts  of 
the  flow  chart  concerned  with  the  detailed  control  of  the  Display  Buffer  indicate 
when  various  strokes  are  left  and  when  they  are  erased,  The  buffer is allocated 
as shown  in  Figure 7. 

Communication  between  SAMPLE,  ANALYZER,  and  DEFINE  is  through  the  inputs  in 
the DB, the  STRK  Table,  and a set  of  standard  global  communication  registers 
plus,  of  course,  the  computer’s  accumulator. 

When  an  input  is  found  in  the  dictionary  as  a  defined  character,  the  output 
character  replaces  the  input  at  the  same  place  on  the  display  at  approximately 
the  same  size,  If  the  input is not  defined,  it is permitted  to  remain  and 
one  of two special  characters, ‘ h ‘ l  or “z”, is  output  at  the  ILOC (a position 
on the  display  surface)  (see  Figure 2). 

The  CALL GRID RPJD WAIT  is  a  Time-sharing  System  dispatcher  call. The  call  could 
be  given  without  a  wait,  but  there  is  nothing  that  needs  to  be  done  in  the  interval; 
also  synchronization  between  the  two  programs  would  be  more  difficult. 

Although  not  shown  in  Figure 6, there  is  a  small  master  program  to  which SAMPLE 
and  TEST  (see  below)  exit  when  the  input  stroke is found to be  on  the 0,O 
coordinate of  the tablet. 

6.3 TEST  SUBROUTINE 

TEST  allows  the  user  to  test a dictionary  in  a  multi-character,  interactive 
mode,  In  addition,  it  provides  two  editing  features:  replacement  of  an 
existing  character  with  an  input,  and  erasure  of  one  or  many  characters  with 
one  scrub,  A  flow  chart  of  the  subroutine  is  shown  in  Ficure 9. 

The  mode  flag  is  set  to  “test“ so that  ANALYZER  does  not  assume  that a l l  of 
the  input  strokes  constitute  one  character, 

The  Display  Buffer  for  TEST  is  organized  as  shown  in  Figure 8. 
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The Dfsplay L i s t  (DLIST) i s  a l inked  l ist  of   output   characters  and o the r  
in format ion   requi red   for   phys ica l ly   loca t ing   the   ind iv idua l   charac te rs  on 
the   d i sp lay   sur face .  

Each element  contains  the  following: 

1. Location  of  the  lower  left-hand  corner  of  the  output  character.  

2. Size (R(Ch 1) .  I 

3.  A pointer   into  the  Display  Buffer   to   the  or igin  of   the   points   forming 
the   ou tput   charac te r .  

4. The output  character  code. 

5. A l i n k   t o   t h e   n e x t  item ( 0  ind ica tes   t she  end  of the  Display L i s t ) .  

The l imi ted   ink   space   in   the   Disp lay   Buffer   (ac tua l ly   the  IM Buffer)  al lows 
input  of 6 t o  8 small cha rac t e r s ,  3 o r  4 medim.-sized cha rzc t e r s ,  1 o r  2 
i a r g e   c h a r a c t e r s ,  and 1 o r  less very   l a rge   Charac te rs .   (This   l imi ta t ion   o r  
extra- large  characters  i s  a problem.) 

Wher? an output i s  passed t o  TEST from ANALYZER, t he   d i sp l ay  l i s t  i s  searched 
t o   s e e  i f  any c h a r a c t e r s   a r e   t o  be de l e t ed ,  The t e s t  i s  performed by computing 
t h e   c e n t e r  of the   charac te r  on t h e  DLIST and  comparing t o   s e e  i f  it l i e s  within 
t h e  minimum rectangle   surrounding  the  input ,   R(ChI) ,  A l l  charac te rs   for  which 
t h i s  i s  t r u e  are de le ted  from t h e  DLIST and DB. 

Although t h e  program current ly   outputs   one  of  two spec ia l   cha rac t e r s  on t h e  
display ("%" o r  " 2 ' ' )  when an unknown character   occurs ,  i t  may ac tua l ly   be  
p r e f e r a b l e   t o  do noth ing ,   tha t  i s ,  to   i gnore   t he   i npu t .   Fo r   t e s t ing  and 
debugging  purposes,   though,  these  special   characters  have  been  of  value.  

6.4 ANALYZER SUBROUTINE 

ANALYZER is--in  reality--two  programs:  one i s  coupled t o  SAMPLE and  the  other  
t o  T E S T .  Each part   could  have been  included as pa r t   o f   t hose   rou t ines ,   o r  
coded as separa te ly   ca l lab le   subrout ines ,   bu t  it was more e f f i c i e n t   t o  have 
but a s ing le   rou t ine .  The d i s t i n c t i o n  between t h e  two pa r t s   o r   func t ions   o f  
ANALYZER i s  obvious from a cursory  examination  of  Figure 10. 

In   o rde r   t o   gua ran tee   t ha t   t he  program executes   the   p roper   func t ion ,   the   var iab le  
tmore i s  i n i t i a l i z e d   t o   z e r o  and i s  maintained a t  tha t   va lue  whenever ANALYZER 
completes   the  analysis   for  a set o f   s t rokes   i n   t he  TEST mode. Therefore,  
on an i n i t i a l   e n t r y   w i t h  a new s e t  of s t rokes ,   t he   func t ion  i s  d i f f e r e n t i a t e d  
by examining  the mode f l a g  whose s e t t i n g  and r e s e t t i n g  i s  completely  under 
control   of  TEST:. 
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That  part   of ANALYZER associ.ated  with SAMPLE assunes t h a t  a l l  o f   t h e   s t r o k e s  
t o  be  processed  belong t o  a s ingle   input   charac te r .  The program  successively 
processes   each   s t roke   un t i l   the  end of   input  ( a  ) o c c u r s   o r   u n t i l  an inva l id  

s t roke  (as de f ined   i n   t he  STROKE subroutine)  occurs.  ANALYZER bu i lds  a t a b l e  
o f   ou tpu t s   ( ca l l ed  STRK) from the  input   s t rokes,   wi th   each  entry  col l ta ining 
the  fol lowing items: F and E ( t h e   f e a t u r e   s t r i n g  f o r  t h e   s t r o k e ) ;  Gm ( t h e  

geometric  relationship between the  mth s t roke  and i t s  co l lec ted   p redecessors ) ;  
A ( s )  ( the   r e su l t   o f   d i c t iona ry   s ea rch ing   o r   o the r  ANALYZER r e s u l t s )  and 

D ( t he   d i c t iona ry   de f in i t i on   fo r   t he  m t h  s t roke  and the   successor   l ink  from 

t h a t   e n t r y ) ;  R ( s )  and R ( f )  ( t h e  minimum rectangle   surrounding  the  s t roke 

and the  rectangle   surrounding a l l  s t rokes  through  the mth one) ;  and--as a 
separa te  item--Ns, t he  number o f   s t rokes   i n   t he   cha rac t e r ,  

That  part   of ANALYZER used by TEST i s  a b i t  more complex.  Rather  than  being 
cont ro l led  by the   i npu t s ,  it i s  cont ro l led  by the   conten t   o f   the   d ic t ionary .  
It  therefore  can  only  determine when t o   o u t p u t  a c h a r a c t e r   t o  TEST as a r e su l t  
of   searching t h e  d i c t iona r  Thus, i t  must be able t o  back  up t o   t h e  last 
l eg i t ima te   cha rac t e r  ( a  Ch ) t h a t  it found, i n  some cases .  STRK table  a l s o  
conta ins   the   ou tpLt  of  the   ana lys i s ,   Cont ro l  i s  r e t u r n e d   t o  EST each time 
ANALYZER has  found (1) a node i n   t h e   d i c t i o n a r y   t h a t   h a s  a Ch 5 as i t s  d e f i n i t i o n  
and no successor   l ink,   or   (2)   an  intermediate   undefined  dict ionary node ( a  ) not 

Preceded by a ChQ) in   t he   ou tpu t   t ab l e  and  no  match on the   successor   s t roke ,  or 
( 3 )  can f ind  no match fo r  a s t roke  a t  a l l  ( CI ) or ( 4 )  a scrub  stroke  (oo--anythinp 

with  too many f e a t u r e s )   o r  ( 5 )  t h e  end o f . i n p u t  (0 ). Inva l id   s t rokes  ( a  ) are 

ignored. A l l  o f   the   per t inent   ou tput   da ta ,  A m ( s ) ,  R m ( f )  and E m ( f ) ,  are placed 

i n   t h e   f i r s t   t a b l e   e n t r y   b e f o r e   c o n t r o l  i s  r e t u r n e d   t o  TEST each time. 
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6.5 STRmKE  SUBROUTINE 

STROKE processes one s t roke  a t  a time 
of   the STRK tab le ,  and sets A ( s )  = u m 1 
as i n i t i a l   v a l u e s .  It  then  determines 
poin t ing  a t  t h e  beginning of a s t roke  

(see  Figure 11). I t  c l e e r s   t h e  mth en t ry  
(undefined) and Am+l(s) t o  a5 (empty) 

i f  t he   i ndex   po in t ing   t o   t he   i npu t s  i s  
(M=l i n  D B t ) ;  i f   n o t ,  it indexes  on  unt i l  

it f i n d s   t h e  beginninti: of a s t roke  or t h e  end  of  input. !Then t h e  beginning  of 
a s t roke  i s  l o c a t e d ,   t h e  xy coordinates  and the   re jec ted   po in t   count  are 
t r a n s f e r r e d   t o   t h e  PTS t a b l e .  Each en t ry   o f  PTS contains   the  i tems X ,  Y ,  C t  
( t h e  x and y coordinates  and r e j ec t ed   po in t   coun t ) ;  h (the  heeding  reduced t o  
one of  32,  between  adjacent  points); ah ( the   d i f f e rence  between  adjacent 
headings) ;  and I ( a  marker fo r   co rne r s  and o the r   pa th   f ea tu re s ) .  After 
t r ans fe r r ing   t he   po in t s  from DBUFR, it determines  whether or not   the   s t roke  
i s  v a l i d  (it i s  inva l id  (0,) i f  t h e  sum of   the   absolu te   va lue   o f   the   d i f fe rence  
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between adjacent   coordinates  i s  g rea t e r   t han  2 0 ) ,  and i f  it i s ,  locates   any 
ex is t ing   corners .  Upon completion  of  corner  detection, it tes t s  f o r  a hook 
t h a t  may be  eliminated from t h e  end  of t h e   s t r o k e  and en te r s   t he   sub rou t ine  
BOTH t o   c o n t i n u e   t h e   f e a t u r e   e x t r a c t i o n .  

6.6 BOTH SUBROUTINE 

A f t e r   i n i t i a l i z i n g   t h e   i n d i c e s  p and q and f c   ( t h e   f e a t u r e   c o u n t ) ,  BOTH ( see  
Figure 1 2 )  e n t e r s  INFLEX (see below) to   de te rmine  i f  t h e r e  i s  an   i n f l ec t ion  
point  between  the  beginning  of  the  stroke and t h e  f irst  corner ,  or t h e  end i f  
no corners  are present .  If k ( a  parameter set  by INFLEX) equals   zero ,   the  
amount of  curvature was below t h e   t h r e s h o l d   f o r  a s t r a i g h t   l i n e ,  and BOTH outputs  
a pair   of  feature  codes  based upon a table (see Figure 1 2 )  t h a t   d e s c r i b e s   t h e  
segment (pa r t   o f   t he   s t roke   i n   ques t ion )   i n  terms of   the numbered areas ( see  
Figure 13) occupied by t h e  end  points.  If c i s  non-zero,   an  inflection  point 
has  been  detected  and  marked,  or i f   t h e   c u r v a t u r e  ( ( E l )  i s  i n s u f f i c i e n t ,  no t e s t  
w i l l  be made on t h e  segment f o r  an i n t e r s e c t i o n  and t h e  area f ea tu res  w i l l  be 
generated. 

INFLEX computes t h e  minimum rectangle  surrounding  the  segment,   Rm(f) and 

from it BflTH computes t h e  dimension  of  the diamond center   area,   (see  Figure 1 4 ) .  
I f  an in f l ec t ion   po in t  i s  marked ( c = l ) ,   t h e  "no output"   occurs   (except   for   the  
occurrence  of   the  inf lect ion  point)   whi le   the  s- i roke  or  segment i s  i n   t h e   c e n t e r  
diamond. On the   o the r   hand ,   i f  no in f l ec t ion   po in t  i s  found  and t h e   t o t a l  
curvature  i n  t h e  segment o r   s t roke  i s  g rea t  enough, XflVER i s  entered  (see  below),  
I t  looks  for   c losed  loops and gene re t e s   t he   app ropr i a t e   f ea tu re   s t r i ng  dependinR 
upon what it finds.   Because  the  curvature i s  h5gh  and t h e r e  i s  no i n f l e c t i o n  
po in t ,  no center  diamond area i s  computed i n  XflVER. Upon r e tu rn ,  i f  t h e   s t r o k e  
is not  completely  processed, a "C" (denot ing  the  occurrence of a corner )  i s  
c o n c a t e n a t e d   t o   t h e   f e a t u r e   s t r i n g  and the   fea ture   count  i s  t e s t ed .   (Th i s  i s  
the   on ly   reason   in   the   cur ren t  program f o r  p r o c e s s i n g   l e s s   t h a n   t h e   f u l l   s t r o k e , )  
I f   the   fea ture   count  i s  t o o  l a r g e ,   t h e  minimum r e c t a n g l e   f o r   t h e   s t r o k e  i s  
computed, the  output  code i s  set  t o  o and a r e t u r n  made t o   t h e   c a l l i n g   r o u t i n e .  

I f   t h e r e  i s  s t i l l  room f o r  more f ea tu res   i n   t he   s t r i ng ,   t he   r ema inde r  or next 
segment of t h e   s t r o k e  i s  processed, 

0' 

IKFLEX (see  Figure 15) not   only-detects  and  marks i n f l e c t i o n   p o i n t s   i n   t h e  
path, but   a l so  computes t h e  minimum rectangle   around  the segment o r   s t r o k e ;  
i f  it i s  a subsequent  segment, INFLEX genera tes   the   geometr ic   re la t ionship  
f ea tu re  between the   cu r ren t  segment ar,d the   co l l ec t ion   o f   p redecesso r s   i n  
t h i s  s t roke .   In   de t ec t ing   i n f l ec t ions ,  i n i t i a l  l imi t s  on cu rva tu re   a r e   s e t  
at 318 f o r  a c lockwise  rotat ing  s t roke,  and -3 /8  f o r  a counter-clockwise 
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r o t a t i n g   s t r o k e ,  If ne i the r   t h re sho ld  i s  exceeded,  the segment o r   s t roke  is 
t r e a t e d  as a s t r a i g h t   l i n e  by BOTH. As soon as one of  the  thresholds  has  been 
exceeded,  the  other i s  modified so t h a t   t h e   d i f f e r e n c e  i s  3/8. Only a f te r  
one  and  then  the  other  of  the two thresholds  has  been  exceeded  (using  the 
proper   s igns)  i s  it assumed t h a t  an i n f l e c t i o n   p o i n t   e x i s t s .  Then a search 
i s  made backward  from the   po in t   t ha t   con t r ibu ted   t he  amount of   curvature  needed 
t o  exceed  the  second  threshold  to   the  best   approximation  of   the  inf lect ion 
point.   This  determination i s  made  by having  the  index "a" poir.:ing t o  
t h e  l as t  point  which exceeded a l i m i t  t h e  f irst  time, using "k" as a switch,  
A temporary sum i s  generated backwards  from the  point  indexed by "a", decrementing 
''ar' each time, u n t i l  a l i m i t  of 5/16 is exceeded. The i n f l e c t i o n   p o i n t  is  
then marked h a l f  way between the  point  indexed by t h e  l as t  point  examined 
(indexed by p) ' and   the   p resent   po in t   indexed  by a. The detect ion  process  
cont inues,   marking  each  inf lect ion  found  unt i l   e i ther  a corner o r  t h e  end 
of t h e   s t r o k e  i s  found. 

6.8 X@VER SUBROUTINE 

X@VER i s  entered from BgTH (see  Figure 1 6 )  only i f  no i n f l e c t i o n   p o i n t  i s  
found  and t h e   t o t a l   c u r v a t u r e  found by INFLEX up to   the   p resent   po in t   exceeds  
1 ( t h a t  i s ,  a h a l f   c i r c l e ) .  The f l a g  "k" i s  set  by INFLEX t o   i n d i c a t e   t h e  
d i rec t ion   of   curva ture ;  3 for  clockwise  and 5 for  counter-clockwise.  If 
the  end-points   of   the  segment o r   s t r o k e  are within 8 raster u n i t s   o f  one another,  
o r   they   a re   wi th in  one t h i r d  of the  width  of  R ( f )   i n  x and  one t h i r d   t h e   h e i g h t s  

of R m ( f )  i n   y ,   t h e   p a t h  i s  considered  closed and t h e   e n t i r e   f i g u r e  i s  taken 
as a loop. The code va lue   s tored  by INFLEX with a zero  added i s  used as t h e  
output  feature  code.  Otherwise,   the  path i s  followed  through  the  four  quadrants 
(see F i g u r e   1 3 )   u n t i l  a quadrant i s  re-entered by the   pa th  and  ended i n   o r  
has   exi ted  the  quadrant .  

m 

\Glen th i s   c i rcumstance   a r i ses ,  MINPTS i s  en tered   to   de te rmine  the two poin ts  on 
the   pa th   wi th in   the  Same q u a d r a n t   t h a t   a r e   c l o s e s t   t o   o n e   a n o t h s .  MINPTS s e t s  
t he   appropr i a t e   f ea tu re   code   i n  C I  f o r  the  condi t ion  found  beI 'are   re turnina 

to X@VER; it a l so   ind ica tes   whether   o r   no t  a l l  of t h e   s t r o k e   o r  segment has 
been  examined i n   t h e   p r o c e s s   ( x t r y = 2 )  s o  t h a t  X@VER can  complete  the  feature 
s t r i n g   f o r   t h e   p a t h .  If no loop is  found, XgVER generates a f e a t u r e   s t r i n g  
based on t h e  four   quadrants   of   the  minimum surrounding  rectangle .  Note t h a t  
t he   cen te r  diamond i s  not  used. 

C 

6.9 MINPTS  SUBROUTINE 

YINPTS (see  Figure 1 7 )  i s  entered from XGVER wi th   the   ind ices  q and p s e t   t o  
the  beginning and  end  of t he   po r t ion  of t h e   s t r o k e   t h a t   h a s  begun  and  ended 
i n  t h e  same quadrant   of   the  minimum rec t ang le .  If the   pa th   has   no t  ended i n  
the  quadrant ,  a search i s  made forward  (toward  the  end) t o  determine if t h e r e  
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Figure 16. XgVER Subroutine 
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Figure  17. MINPTS Subroutine 
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i s  a pair   of   points   (xy  xy ) closer   than  the  beginning  and  ending  pair  

(xy , xyq). By appropriately  manipulating p and q ,   t h e   p a i r   o f   p o i n t s   t h a t  

are a minimum dis tance  from  one  another is  determined, If t h a t   d i s t a n c e  i s  
less t h a n   o r   e q u a l   t o  8 raster un i t s  (65 is  used i n  MINPB because  the  rout ine 
DIST genera tes   the   square   o f   the   d i s tance) ,  a closed  loop  has  been  found; 
otherwise  the  path is  not  conbidered t o  have   an   in te rsec t ion   or   to   be   c losed ,  
t he   appropr i a t e   quan t i t i e s  and t a b l e s  are updated  and  control is  r e t u r n e d   t o  
XOVER . 

P+n' q 

P 

6.10 QUAD, APUT and DIST 

These three   subrout ines  (see Figure 18) are service  rout ines   used by BgTH, 
XOVER and MINPTS. 

QUAD simply  assigns FL quadrant number based upon t h e  Ax and Ay supplied by 
the   ca l l i ng   rou t ine .   In  a l l  cases  of i t s  use ,   t he   ca l l i ng   rou t ine   supp l i e s  
AXY = X,Y - 8 ( f ) .  

APUT simply  concatenates  the  feature  supplied when the   rou t ine  i s  e n t e r e d   t o  
t h e   r i g h t  end of   the   fea ture   s t r ing   (Fm) ,  and  increments  the  feature  count  (fc) 
by  one. 

DIST computes the  square of t he   d i s t ance  between two poin ts  xy and  xy , i and 

j ( i n d i c e s   p o i n t i n g   t o  two e n t r i e s   i n   t h e  PTS tab le)  supplied by t h e   c a l l i n g  
rou t ine  . 

i j 

6.11 DEFINE  SUBROUTINE 

DEFINE (see Figure 19) adds   def in i t ions  t o  the   d ic t ionary .  The DEFINE rou t ine  
s tar ts  wi th   the  las t  s t roke   o f   the   input   (en t ry  m of   the  STRK t a b l e ) ,   i n s e r t i n g  
only   those   s t rokes   tha t  were not  found by SEARCHD. If a l l  of   the   requi red  
s t roke   in format ion   for   the  new character  cannot be added  because  of  insufficient 
space, none i s  added t o   t h e   d i c t i o n a r y ,   t h u s   e l i m i n a t i n g   t h e  problem  of  dangling 
en t r i e s .   I n   add i t ion ,  it sets the   va r i ab le   "de fn"   t o  "OK" ( i f  s u c c e s s f u l ) ,   o r  
t o  "NG" i f  t h e  above  problem arises, 

6.12 SEARCHD  SUBROUTfNE 

SEARCHD (see Figure 20)  determines  from  the  index m i f  t h e   s t r o k e   t o  be  searched 
i s  t h e  f irst  stroke  of  an  input  character o r  a successor  stroke.  If t h e  
s t roke  i s  a f irst  s t roke ,   t he   rou t ine  SEARCHF i s  entered.  Otherwise, SEARCHD 
computes the   geometr ic   re la t ionship  between the   cur ren t   s t roke  and t h e   c o l l e c t i o n  
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Figure 18. QUAD(Ax,Ay), APUT (x ) ,  and DIST(i,J) Subroutines 
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Figure 19. DEFINE Subroutine 
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Figure 20. SEARCHD Subroutine 
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its  predecessors.  It  first  computes  the  minimum  rectangle  surrounding  all 
strokes  to  this  point  and  its  size.  It  then  differences  the  center  coordinate 
of  the  rectangle  surrounding  the  current  stroke  with  that  of  its  predecessors 
and  determines  if  they  are  coincident. If they  are, SEARCHS is  called  directly, 
(Gm  is  preset  to  zero  and  that  is  the  code  used  for  coincidence.) If the  two 
rectangles  are  not  coincident,  the  center-to-center  direction  is  computed 
using  the  routine HED8, and  inclusion  or  overlap  and  nearness  are  tested 
by  computing 

dxy = Size(Rm(f)) - Size(Rm - l(f)) - Size(Rm(S)) 
Figure 21 illustrates  several  examples  of  this  computation, If from  this 
test  it  is  determined  that  the  rectangles  are  "near," 16 is  added  to  the 
center-to-center  heading to  complete  the  code  for  the  geometric  relationship; 
otherwise 24 is  added  to  indicate  that  the  rectangles  are  "far"  from  one 
another. 

- 

AY 

Ax 

Figure 21. Examples of Overlap Computation 
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6.13 SEARCHF SUBROUTINE 

S E A R C H F  (see  Figure 22) begins i t s  search  for  an  exact  match  with  the las t  
en t ry   o f   the  f i rs t  s t rokes   i n  DICT. (Figure 23 shows the  content  and layout  
of D I C T ,  t he   cha rac t e r   de f in i t i on   d i c t iona ry . )  If an  exact rnatch i s  found 
for t he   f ea tu re   s t r i ng   o f   t he  unlcnown s t r o k e ,   t h e   r o u t i n e  e x i t s  w i th   t he  
d i c t iona ry   l oca t ion   i n  D and t h e   d e f i n i t i o n  (Def) o f   t h a t   e n t r y   i n  Am(S). 

If no rnatch i s  made, D . i s  set  t o   z e r o  and A ( S )  i s  s e t   t o  al. 
m 

m m 

6.14 S E A R C H S  SUBROUTINE 

GEARCHS ( see   F igure  24)  begins i t s  search  by  examining Dm-1 to  determine  whether 

or   not  a l eg i t ima te   successo r   s t roke   ex i s t s   i n   t he   d i c t iona ry .  If Dm - i s  not 

equa l   t o   ze ro ,   t he   successo r   l i nk   o f   t he   p rev ious   s t roke  must also  be  non-zero, 
o therwise   the   rou t ine   re turns   wi th  D e q u a l   t o   z e r o  and A ( S )  s e t   t o  0 

I f  a successo r   s t roke   ex i s t s ,  an  exact  match must  be  found  between  the  .feature 
string and  geometric  relationship  of  the unknown s t roke ,  and the   d i c t iona ry  
entry.  A l l  of t h e   p o t e n t i a l   s u c c e s s o r   s t r o k e s   a r e   t e s t e d   i n   t h i s  way u n t i l  
e i t h e r  an exact match i s  found or a ' ' nex t   l ink"   equal   to   zero  i s  found. I n  
t,he former  case,   the   rout ine  re turns   with Dm e q u a l   t o   t h e   d e f i n i t i o n   l o c a t e d  

at t h a t  entry.  I n  t h e  l a t t e r  casep   t he   rou t ine   r e tu rns   w i th  Dm equal   to   zero  

and A ( S )  e q u a l   t o  al. 

m m 1' 

m 

6.is H E D 8  and D I R Q  SUBROUTINES 

HE33 (see  Figure 2 5 )  and D I R Q  (see  Figure 26)  are two subrout ines   used  for  
quant iz ing  direct ion.  Both rou t ines  work from t ab le s .   The i r   bas i c   d i f f e rence  
i s  the   degree   o f   f ineness   o f   the   quant iza t ion .  HED8 q u a n t i f i e s   d i r e c t i o n s  
i n t o  one of 8; DIRQ, i n t o  one  of 32. The values  shown i n  HED8 (Figure 25 )  are 
the   va lues   u sed .   In   o rde r   t o   f a t i l i t a t e   d i f f e renc ing   o f   t he   head ings  computed 
by  D I R Q  ( i tem h of t h e  PTS t a b l e )  t o  form Ah, the   ou tput   va lues  are formed as 
t v o ' s  complement f r ac t ions  and a re   d i f fe renced  as f u l l  word two's complement 
f r ac t ions .  A difference  of  -1 always r e s u l t s  from a 180° change of d i r ec t ion  
between the  two headings; +1 neve r   r e su l t s ,   t hus   gene ra t ing   cons i s t en t   va lues .  

6*i6 PURGE, MERGE and @PTIMIZE  SUBROUTINES 

These th ree  programs  do  not  run  under  the same con t ro l  as those  discussed 
abovc.  Because they  require  communication t h a t  would be d i f f i c u l t   t h r o u g h  
 he Graphic  Tablet  Display  console,  they communicate wi th   t he   u se r  
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Figure 23 .  Character  Definition  Dictionary 
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Figure 22. SEARCHF Subroutine 
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Figure 24. SEARCHS Subroutine 
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Figure 25. HED8 (Axy) Subroutine Flow Chart  and Table 
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Figure 26. DIRQ (Axy) Subroutine Flow Chart and Table 
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via  a  keyboard  console,  This  imposes  no  hardship,  since  the  keyboard  consols 
is  required  to  initiate  loading  and  other  communication  required  by  the  Time- 
Sharing  System. 

6.16.1 PURGE  Subroutine 

When  called  from  the  keyboard  console,  the  program  asks  the  user  to  supply a 
purging  threshold--that is,  the  recognition  count  (Rc)  level  below  which  entries 
are  to  be  removed.  (It  should  be  remembered  that  ANALYZER  increments  the 
recognition  count  of  an  entry  each  time  a  completely  successful  match  is  made 
between  an  input  character  and  a  dictionary  entry.) If  the  user  replies  "NONE," 
the  program  asks  which  characters  or  entries,  regardless  of  recognition  count, 
are  to  be  removed.  This  interactive  conversation  is  not  actually a part  of 
the  PURGE  routine  (see  Figure 27), but  rather  is  a  part  of  an  interactive 
keyboard  control  program  that  provides  the  interface  between  the  user  and  the 
various  service  and  special  debugging  aids  that  are  a  part  of  the  system. 

After  the  user  supplies  the  appropriate  response,  the  PURGE  program  methodically 
searches  the  dictionary,  entry  by  entry,  following  the  links  comparing  the 
recognition  count  to  the  user-supplied  threshold--called  Thresh--and  output 
character  code--called  PChar  (only  one  is  valid).  PURGE  marks  those  entries 
that  meet  the  criteria  as  "undefined"  entries,  and  sets  the  recognition 
count  for  those  entries  to  zero.  It  then  removes  and  restructures  the  appropriate 
links  for  first-stroke  entries,  In  order  to  accomplish  this  task,  it  uses  an 
additional  table,  DICTE. 

When  it  has  examined  every  entry,  PURGE  then  enters  COMPACT  (see  below),  a 
program  that  does  the  restructuring  of  the  dictionary  to  recover  space  of 
the  vacated  entries.  Note  that  in  the  case  of  multi-stroke  characters,  only 
those  strokes  of  the  definition  are  removed  that  are  not  linked  to  some  other 
entry  that  is  not to be  removed,  That  is,  only  the  last  n  strokes  of  an  m-stroke 
definition  may  actually  be  physically  removed  from  the  dictionary.  Take,  for 
example,  a  four-stroke "M" drawn  as  where  the  first  three  strokes  are  defined 
as  an  "N". If  the  user  requests  that  "M's"  be  removed  from  the  dictionary,  only 
the  fourth  stroke  of  the  "M"  in  question  will  actually  be  removed  and  the  first 
three  strokes  that  define  an  "N"  will  be  undisturbed. 

6.16.2 COMPACT  Subroutine 

COMPACT  (see  Figure 28) starts  with  the  first  of  the  successor  strokes,  compacting 
the  entries  by  removing  those  indicated  in  the  DICTE  tables  by  the  calling  program, 
and  restructuring  the  links  appropriately so that  the  entries  are  tightly  packed. 
It  then  restructures  the  links  in  the  first  stroke  and  the  successor  stroke 
entries  from  the  information  saved  in  the  DICTE  table. 
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Figure 27. PURGE Subroutine 
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6.16.3 MERGE Subroutine 

The  interactive  keyboard  control  program  requires  the  user  to  specify  the 
file  name  of  the  dictionary  that  is to be  merged  into  the  existing  one.  When 
it  receives  a  proper  name  from  the  user  ("proper"  in  this  sense  means  that  it 
is  the  sane  of a file  that  the  user  may  access),  it  reads  the  dictionary  file 
from  the  system's  disc  storage  into a second  dictionary  space  called  DICT". 
MERGE  (see  Figure 2 9 )  then  takes  the  strokes  from  DICT"  following  the  links, 
as  if  they  were  coming  from  the  SAMPLE  program,  building  a  STRK  table  and 
searching  the  existing  dictionary  for  matches. If a complete  match  is  found, 
the sum of  the  recognition  counts  plus  one  replaces  the  recognition  count  in 
D I C T .  If no  match  or  an  incomplete  match  is  made  in  DICT,  the  non-existent 
strokes  are  added to  DICT by  calling  DEFINE. 

In  the  case  where  there  is  an  exact  duplicate of feature  information  but  the 
definitions  in  the  two  dictionaries  differ,  the  user  is  asked  to  make a 
choice  between  the  two  available  characters  or  delete  the  entry  entirely, 
If  he chooses  the  latter,  it  is  noted  and  ?URGE is called to delete  the 
troublesome  definitions. If the  result  of  the  merge  produces  a  dictionary 
that  is  too  large,  the  user  is'informed  that  the  merge  was  incomplete,  and 
he  is  unfortunately  left  with  a  dictionary of unknown  content.  Thus,  it 
pays  to  have  previously  saved  a  copy  of  both  dictionaries  that  are to be  merged 
and  to  have  purged  and  optimized  at  least  one  (if  not  both)  dictionaries  before 
beginning  the  merge.  Our  present  system  permits  the  user to save  any  dictionary 
on  the  system  disc  storage  (at  least  temporarily)  with  any  arbitrary  name 
attached,  Therefore,  it  is  not  unreasonable  to  keep  several  versions  of  the 
same  dictionary  available  in  case  of  emergency  or  for  experimentation, 

6.16.4 Optimization 

The  process  of  optimizing  the  dictionary is one  of  recognizing  groups of 
dictionary  entries  that  are  unambiguously  equivalent,  and  re-linking  the 
dictionary  to  reflect  this  equivalence. 

Two  dictionary  entries  are  considered to be  equivalent  if  they  are  on  the 
same  dictionary  level  (i.e.,  both  first  strokes,  both  second  strokes,  etc.), 
and  one  or  more  of  the  following  conditions  also  holds  true: 

1. They  have  the  same  character  definition. 

2. They  have  successors  at  a  common  dictionary  level  that  have 
the  same  character  definition. 

3. They  are  identical  (in  feature,  envelope,  geometric-relation) 
and  their  most  immediate  predecessor  strokes  are  equivalent. 

In  forming  equivalence  groups,  an  additional  rule  is  applied:  two  entries, 
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Figure 29. MERGE Subroutine 
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each  equivalent  to  the  same  third  entry,  are  also  equivalent to each  other. 
Finally, a. dictionary  entry  that  is  equivalent to  no  other  dictionary  entries 
forms a one-member  equivalence  group  by  itself. 

A n  ambiguous  equivalence  group  is  one  in  which  members  have  conflicting  character 
definitions;  that  is,  among  those  members  of  a  group  which  are  not  intermediate 
strokes,  more  than  one  unique  character  definition  is  present. 

The  optimizer  divides  the  dictionary  first-stroke  section  into  a  set  of 
equivalence  groups.  Then,  taking  each of  thse groups  separately,  it  further 
groups all successors,  at a l l  levels,  to  members  of  this  group,  The  grouping 
process  results  in  a  tree  structure  whose  nodes  are  equivalence  groups.  Each 
group,  except  the  first,  is  a  next-level  successor  group  to  some  previous 
group.  For  each  tree  structure,  ambiguity  at  any  node  renders  the  whole  tree 
ambiguous,  and  the  dictionary  entries  associated  with  the  tree  are  not  optimized, 
Otherwise,  three  kinds of optimization  are  performed: 

1. 

2 .  

3.  

Where  a  group  contains  subgroups  of  identical  dictionary 
entries,  all  but  one  member  of  each  subgroup  are  deleted  from 
the  dictionary. 
When  a  group  contains  members  that  are  intermediate  strokes 
as  well as members  that  have  a  character  definition,  the 
intermediate  strokes  are  redefined to that  character. 

A l l  members of each  successor  group  are  linked,  in  the 
dictionary,  as  next-level  successors  to  all  members  of  its 
parent  group.  This  provides  definition  paths  in  the  dictionary 
which  did  not  before  exist. 

6.16.5 OPTIMIZE Subroutine 

Optimization  is  performed  by  procedure OPTIPlIZE (see  Figure 3 0 )  er.d the 
procedures DTREE, ADDGROUF', GTREE, GCHECK, RELINK, and COMPACT which  it  calls, 
OPTIblIZE determines  the  membership  of  an  equivalence  grouc at any  level  from 
information  contained  in  the  section of  the SORT table ?GI- thaf  level;  thus, 
! ~ e f o r e  any  prouping  is  performed,  the  first-level  section sf the SORT table 
is constructed  by  applying  procedure DTREE to  each  first-ntroke  entry of 
the  dictionary. 

6.16.5.1 DTREE Subroutine 

':!hen procedure DTREE (see  Figure 31) is  applied to  a  dictionary  entry  (entry ), 
it examines  er.try  and  its  successors  at  all  lower  levels,  For  each  such P 
entry  that  has  a  character  definition ( i s  not an  intermediate  stroke),  it 

F 
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0 * GR!WPO. LTnSo, L T B l  
C l e a r  DICTE T a b l e  

0 + s 0 5 ,  SORTl 
0 * CP 

I *  E n t e r  D T R E E  

Q 
L+1 * I 

E * LS@RTi 

0 + S p T C  

C+l + E 

I 

cl IS p = O? 

& S RTLc * Temp 

c+1 * R 

SORTRp * t 
LS0nTt+1 + p 

t * GChaln 
Deft * Ch 

0 + CIILinkg. CSLlnk 

g f DCro"pt 

f f i roupI- l  + t 

R * ffiroup 

IS t = O? 

'i" I 

P + l  * P 

!?? 

s0RTR * t 

IS t = O? 

I S  1 = 11 

w 
no 

Enter GTME(CCHECK) 

t 
I 

1 E n t e r  GT%EE(RILINK) I 

w 
no 

Enter GTME(CCHECK) 

t 
I 

1 E n t e r  GT%EE(RILINK) I 

Is S0RTL- = Temp? 

SdRTp 
- SORTc C+l * c  

I S  S ~ R T  = o?  

LSORTI+l * p 

LSVRTI * E 

YFS "? 

Figure 30. @PTIMIZE Subroutine 
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SLink: + i 
NLinki + i 

IS i = o? 

+ 
c-1 -+ b 

no 
I 

sword- S@RTb 

Is sword = O? 

Yes + 
I b-1 + b 

Figure 31. DTREE Subroutine 
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produces a t e n t a t i v e  SORT table en t ry ,  which is  then added t o   t h e   c u r r e n t  
sec t ion   of   the  SORT tab le ,   on ly  if no iden t i ca l   en t ry   a l r eady  exists t h e r e ,  
SORT e n t r i e s  are added s o  as t o  maintain  ascending  sort   order  within  each 
sec t ion ,  and section  brackets  (zero-words) are maintained a t  the   top   and  
bottom  of  each  section. (The bot tom  bracket   of   each  sect ion  a lso  serves  
as the   top   b racke t   o f   the   next   sec t ion . )  

A SORT en t ry  i s  i n  two pieces:  

1. SORTL, t h e  l e f t  ha l f -word ,   conta ins   l eve l   ( re la t ive  t o  t h e  
l eve l   o f   en t ry  which i s  ass igned   leve l  11, followed by 

the   charac te r   def in i t ion .  
P, 

2. SGRTR, the  r ight   half-word,   contains  p. 

Thus,  where a p p l i e d   t o   e n t r y  DTREE adds SORT entr ies   for   each  unique 

dict ionary  character   of  which en t ry  i s  a component s t roke .  The uniqueness 
P 

tes t  dis t inguishes ,   for   example,  between a 2-stroke and a +stroke "N". 

P' 

Once t h e   f i r s t - l e v e l  SORT sect ion  has  been b u i l t ,  OPTIMIZE a t tempts   to   op t imize  
successor "famiiies" of  dictionary  entries.   For  each  family it first  a b s t r a c t s  
a f i rs t - level   equivalence  group from t h e  SORT table,   and  then  goes on t o  group 
the   d i c t iona ry   successo r s ,   a t  a l l  l eve l s ,   o f  members of  the  group. 

The p rocess   t o  form a group, a t  any l e v e l ,  i s  t h i s :  The f i r s t  group member 
i s  tha t   r e f e renced   i n  SORTR of   t he   f i r s t   en t ry   o f   t he   app ropr i a t e  SORT t a b l e  
section.  Additional members a r e  added t o   t h e  group  where they   a re   found  to  
be  paired  ( in  SORTR) with a SORTL t h a t  i s  a l so   pa i red   wi th   an   ex is t ing  group 
member, A s  i t e r a t i o n s   a r e  made through  the  sect ion,  SORT e n t r i e s   t h a t  
reference members of   the  group  are   deleted  in   such a way t h a t  when the   search  
i s  exhausted,   the   remaining  entr ies   in   the  sect ion  (and  the  bot tom  bracket)  
have  been  compacted  upwards. 

A s  each  group i s  formed,  an  entry  in  the GROUP t a b l e  i s  constructed,  GROUP 
en t ry  i s  never   used;   the  f i rs t - level   group  goes  into  entry and each 

successor   group  into  the  next   avai lable   entry.  Items GSLink and GNLink are 
used to   l ink   the   var ious   g roups   (nodes   o f   the   g roup   t ree) .  GSLink p o i n t s   t o  
a group's f i r s t  successor   group;   each  group  in   the  successor   chain  points  
t o   t h e   n e x t   l i n k   i n  i t s  GNLink. Item GChain i s  t h e  head  of  the  group's 
membership chain; it p o i n t s   t o   t h e   d i c t i o n a r y   l o c a t i o n   o f   t h e   f i r s t   g r o u p  
member. Each member i s  l i n k e d   t o   t h e   n e x t  member i n - i t e m  DGLink in   the   ex tended  
d i c t iona ry   ( t ab le  DICTE).  Item DGroup ( a l s o   i n  DICTE) po in ts ,   fo r   each  member, 
t o   t h e  GROUP t a b l e   e n t r y  of i t s  group.  Item Ch conta ins   the   g roup ' s   charac te r  
d e f i n i t i o n .  

0 1 9  
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6.16.5.2 ADDGR~UP Subroutine 

ADDGRGUF (see Figure 32) adds a new  member t o   t h e   f r o n t  of a group's membership 
chain,  It  a l s o  sets t h e  new member's DGroup, and  updates  the  group's Ch. If 
Ch s tsr ts  as a it i s  replaced by t h e   d e f i n i t i o n   o f   t h e  f irst  new  member t h a t  

has a Ch . Subsequent  addition of a new member with a d i f f e r e n t   c h a r a c t e r  
d e f i n i t i o n  makes the  group ambiguous. For ambiguous groups a t  o ther   than  
t h e  first l eve l ,   an  immediate abor t  i s  made. To ensu re   t ha t  a l l  members of 
an ambiguous f i r s t - l eve l   g roup   a r e  removed from t h e  SORT table ,  the  group 's  
Ch i s  set  t o  al; it remains so un t i l   t he   g roup  i s  completely  formed, a t  which 

time an  abort i s  made, 

0 2 9  

An abor t   d i scont inues   p rocess ing   of   the   cur ren t   fami ly ,  The conten ts   o f   the  
GROUP and SORT t a b l e s  beyond t h e  f i r s t  sec t ions  are disregarded,  and processing 
of the  next  family i s  i n i t i a t e d  by forming a new f i r s t - l e v e l   g r o u p   i n t o  GROUP 
entryl.  

Upon formation of an  unambiguous group,   addi t ional   groups  are  formed i n   t h e  
following  order:  

1. The DTREE subroutine  processes r:wh  member of   the   g roup   jus t  
completed t o  form a SORT s e c t i o n  a t  the   nex t   l eve l .  If t h i s  
s ec t ion  i s  empty, con t ro l   pas ses   t o   s t ep  2. Otherwise,   the 
l e v e l  i s  stepped down, and a group i s  formed  from t h e  new 
sec t ion   to   begin   the   successor   cha in   o f   the   g roup   jus t  made. 

2. If t h e  SORT sec t ion  a t  t h e   c u r r e n t   l e v e l  i s  not  empty, another 
group i s  made a t  t h i s   l e v e l ,  and  added t o   t h e   f r o n t  of t h e  
successor   chain  of   the most recent  group  formed a t  the   p rev ious  
l e v e l ,  If t h e  SORT sec t ion  at t h i s   l e v e l  i s  empty,  however, 
t h e   l e v e l  i s  stepped  back  up, and s t e p  2 i s  re-entered. 

The process   s tops when s t e p  2 i s  entered  and l eve l  i s  1. That i s ,  t h e  t ree  i s  
completed when the   next   g roup   to  be made i s  a f i r s t - l eve l   g roup .  To f a c i l i t a t e  
group  l inking  and  level   s tepping,  table  LTAB i s  maintained  during  the  grouping 
process.  Indexed by l e v e l ,  LTAB en t r ies  contain  i tem LSORT (which   po in ts   to  
the  top  bracket   of   the   corresponding SORT s e c t i o n )  and item LGroup (which 
p o i n t s   t o   t h e  GROUP table en t ry  f o r  t h e  most recent ly  formed  group a t  each 
l e v e l  ) . 
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Set Return 
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ABORT 

BPTIMIZE 

Figure 32. ADDGRgUP Subroutine 
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A group  tree  which  survives to  this point  has  been  constructed  by  the  application 
of only  the  first  two  equivalence  rules.  To  apply  the  identity  rule,  OPTIMIZE 
now  calls  procedure  GTREE to step  through  the  tree  structure,  applying  procedure 
GCHECK  to  each  group. 

6.16.5.3  GTREE  Subroutine 

GTREE  (see  Figure 33) steps  through  the  tree,  beginning  with  the  first-level 
group,  in  this  order: 

1. Down  to  the  next  level,  to  the  group  pointed  to  by  GSLink, 
'but if  GSLink  is  zero,  then: 

2. Across  to  the  next  group  pointed  to  by  GNLink,  but  if  GNLink 
is  zero  then: 

3.  Back  up  a  level,  then  proceed to step 2. 

GTREE  is  finished  when  all  nodes  have  been  processed.  To  facilitate  stepping, 
GTREE  uses  the  LEVEL  table,  in  which  item  LThis  points  to  the  current  node  at 
each  level. 

6.16.5.4 GCHECK  Subroutine 

When  GCHECK  (see  Figure 34) is  applied  to  GROUP  it  makes  identity  comparisons 
between  each  member  of  GROUP  and  all  next-level  dictionary  successors to  the 

members of GROUP  the  parent  group  of  GROUP . (No  member  of  GROUP  that 
has  been  marked  as  identical  is  used  as  a  basis  for  comparison,  however,  and 
no  nember of GROUP  is  compared  with  itself.)  When  an  identical  dictionary 
entry  is  found,  it  is  marked  by  having  its  DEQ  in  the  extended  dictionary  point 
to  the  dictionary  entry  to  which  it is identical. If  the identical  entry  is 
not  also  a  member  of  GROUP  it  belongs  to  another  group  GROUP^) which  is 
also  a  successor  to  GROUPx.  In  this  case,  GROUPi  is  merged  with GROUP , (But 

if the Ch's of  these  two  groups  are  in  conflict,  the  merged  group  would  be 
amblguous,  and  an  abort  to  begin  processing  the  next  family  is  made.)  Steps 
in  the  merging  process  are: 

8' 

g 

X' g 8; 

8 

g' 
g 

1. GROUP.  is  deleted  from  the  chain  of  successors  to GROUP,,  and 

the  linkage  is  closed  (note  that  because of processing  order, 
GROUP.  is  further  along  this  chain  than  GROUP  and  has  not  yet 
been  processed  by  procedure  GCHECK). 

1 

1 R' 
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Figure 33. GTREE  Subroutine 
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Figure 34. GCHECIC Subroutine 

74 



2. If GROUP.  has  a  non-empty  successor  chain,  then  GROUP I s  

successor  chain  is  appended to  it, and  the  pointer  GLink 
R 

is  made to point to  the  first  link  of  the  combined  chain, 

1 

1 g 

3. The chain of  members  of  GROUPi  is  inserted  into  the  chain  of 
members of GROUP  immediately  following  the  link  which  is 
currently  the  basis  for  comparison. 

I3 

4. The  DGroup  of  each  member of GROUPi  is  changed to reflect 
membership  in  GROUP 

g' 

5 .  If GROUP ' s  Ch  is a2, it  is  replaced  by  Ch 
% i' 

Note  that  the  GCHECK  subroutine  does  not  operate on  the  first-level  group 
(GROUP1);  it  has no parent  group. 

If  a tree  survives  to  this  point,  the  dictionary  entries  associated  with  it 
are  then  optimized.  OPTIMIZE  again  calls  procedure  GTREE to step  through 
the  tree,  but  this  time  applying  procedure  RELINK  to  each  group. 

6.16.5.5 RELINK  Subroutine 

RELINK  (see  Figure 35) applied to Aroupg  first  considers  the  set  of  dictionary 
entries  formed  by  the  union of the  members  of  all  groups  on  GROUP ' s  successor 
chain.  Each  member of the  set  that  has  been  marked  as  identical  by  GCHECK  is 
processed  in  the  following  way: 

P; 

1. It  is  eliminated  from  the  set. 
2. Its  recognition  count  is  added  to  the  recognition  count 

of  the  dictionary  entry to which  it  is  identical, 
3. It  is  marked  for  subsequent  deeltion.  Its  DMark  in  the  extended 

dictionary  is  set  "on",  and  the  deletion  signal  (item  CP)  is 
also  set  "on", 

The  remaining  members of  the  set  are  linked  together  in  the  dictionary  as  the 
successor  chain  to e m e m b e r  of  GROUP  SLink  of  each  member of GROUP  points 
to  the  head  of  the  chain  (SLink's  are  zero  if  the  set  is  empty),  and  members  of 
the  chain  are  linked to each  other  by  their  NLinks. 

€5' 6 
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Figure 35. RELIMK Subroutine 

'76 



Finally, RELINK replaces  the  character  definition  of  each  member  of  GROUP 

with  the  group's  Ch.  Actual  redefinition  takes  place  when  a  member  is ax1 
intermediate  stroke  and  Ch  is a defined  character. 

When  relinking  is  finished, OPTIMIZE begins  processing  the  next  family. If 
at  this  time, or after  an  abort,  the  SORT  table  first-level  section  is  empty, 
all  families  have  been  processed.  Before  exiting,  if  the  deletion  signal  is 
on, OPTIMIZE calls  the  COMPACT  subroutine  (see  above) to delete  those  dictionary 
entries  that  were  marked by RELINK. 
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ADDENDUM  A:  GLOSSARY OF MEJEKONICS X D  ABBREVIATIONS 

A(S)  

A I  

BINK 

C 

c  c  ode 

cbeg,  cend 

ai l  

Ch 0 

CHSW 

MEANING 

These l e t t e r s   a r e   u s e d   t o  
des igna te   ind ices   in   the  
usual  programming sense 
of p o i n t e r s   t o   t a b l e  
e n t r i e s   o r   i t e r a t i o n  
counts. 

Result of  processing  an 
input   s t roke.  

A pr imary  s t roke  feature-  
loop, i n f l ec t ion   po in t  # 

or   corner .  

Origin of t a b l e t   i n p u t  
i n t o   t h e   d i s p l a y  buffer 
used t o   s e t  INKflRG. 

Rejected  point  count. 

S ingle   fea ture   s torage ,  

Beginning  and  end 
poin ters .  

Def in i t ion   assoc ia ted  
with a group. 

Symbol used t o   d e s i g n a t e  
a member of the  output  
cha rac t e r   s e t .  

The program swi tch   in  
SAMPLE tha t   con t ro l s  
program  flow  and the  
meaning of   user   act ions 
a t  t h e   t a b l e t .  CHSW may 
be   s e t  t o  "D" meaning "a 
defined  character  has been 
output   or  a new d e f i n i t i o n  
added t o   t h e   d i c t i o n a r y " ;  
N ,  meaning " there  i s  no 
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REFERENCE 

SAWLZ, TEST, ANALYZER STRgKE, 
BOTH, DEFIME, SEARCHF,  SEARCHS 

XWER 

S.k!!PLE TEST 

G R I D ,  STRmKE 

XGVSR 

XGVER, MINPTS 

ADDGROUP, GCHECK, 3ZLINK 

SAMPLE TEST 

SMPLE 



TERM - MEANING 

inpu t "   ( t h i s  is  t h e   i n i t i a l  
condi t ion and the  condi t ion 
a f t e r  a "clear") ;  "u" meaning 
" there  i s  an  undefined  input 
pending;  and "R" meaning 
" the  funct ion  but ton REDEFINE 

'has  been  pushed" 

REFERENCE 

Ind ica to r   fo r   d i r ec t ion   o f  
r o t a t i o n ,  

X@VER C I  

Test value for   index ,  S T R ~ K E  c i x  

c t  

D 

Rejected  point  count ANALYZER 

Dic t ionary   po in te r   resu l t ing  
from search. 

ANALYZER, DEFINE, SFARCHF, 
SEARCHS 

def Output de f in i t i on   i n   each  
d ic t ionary   en t ry .  

DEFINE,  SEARCHF,  SEARCHS, 
PURGE,  MERGE, DTREE, ADDGRgUP, 
RELINK 

def n Indica tor   for   success   o r  
fa i lure   o f   adding  new ent ry  
t o   d i c t i o n a r y .  

DEFINE MERGE 

DEQ 

DGlink 

P o i n t e r   f o r   l i k e   e n t r i e s   i n  
dict ionary.  

GCHECK RELINK 

OPTIMIZE  ADDGRBUP , GCHECK, 
RELINK 

Po in te r   i n to  DICTE. 

DGroup 

D I  

d i s t  

Class i f ica t ion   for   g roupings .  OPTIMIZE, GCHECK 

Center diamond dimension, B@TH 

Square  of t he   d i s t ance  between 
two poin ts  

MINPTS 

DLIST The l inked  l is t  of  output 
cha rac t e r s   i n  TEST containing 
s i z e  and posi t ion  information 
and the   r e l a t ive   l oca t ion   o f  
t h e   a c t u a l   c h a r a c t e r  i n  IME3 
o r  DB. 

TEST 
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- TERM 

DLO@ 

DMARK 

E 

ecode 

F 

FB 

f c  

G 

GChain 

GKink 

GSLink 

h 

H 

I 

MEANING  REFERENCE 

Poin ter   to   next   ava i lab le  DEFINE , SEARCHF,  PURGE 
first s t roke   loca t ion   in  COMPACT 
dictionary.  

A f lag.  PURSE , C@MPACT , RELINK 

Part   of   feature   s t r ing.  ANALYZER, DEFINE,  SEARCHF, 
SEARCHS, MERGE, GCHECK 

Single  generated  feature INFLEX 
storage. 

1) Fil ter   constant  set by SAMPLE,  TEST, G R I D  
SAMPLE and TEST for   use  
by GRID. 

2)  Part  of generated  feature ANALYZER, DEFINE,  SEARCHF, 
s t r ing .  SEARCHS, MERGE, GCHECK 

Abbreviation  for  "function SAMPLE,  TEST, 
button" 

Feature  count. BOTH, APUT 

Geometric re la t ionship 
between strokes  of a 
multi-stroke  character, 

ANALYZER, DEFINE, SEARCHD, 
SEARCHS, MERGE, GCHECK 

Pointer   into  dict ionary.  OPTIMIZE, ADDGROUP, GCHECK, 
RELINK 

Poin ter   in to  GROUP table .  OPTIMIZE, GCHECK, RELINK 

Poin ter   in to  GROUP table .  OPTIMIZE, GTREE, GCHECK, 
RELIMK 

Heading computed between two STROKE 
points by DIRQ.  

Upper limit for t e s t i n g  INFLEX 
curva ture   in   in f lec t ion   po in t  
computation. 

Indicator  for  primary  stroke STROKE, B@TH 
features:   corner ,   inf lect ion 
point , or  loop. 
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TERM - REFERENCE 

SAMPLE 

MEANING 

ILW 

IMl3 

INKLW 

Coordinate  location on display 
surface  for  output  messages.  

Input memory bu f fe r   fo r   d i sp l ay  
refreshing.  

G R I D ,  SAMPLE,  TEST 

The cu r ren t   r e l a t ive   l oca t ion  
i n  IMB f o r  "ink". 

G R I D ,  SAMPLE,  TEST, 
ANALYZER 

INK~RG 

k 

The r e l a t i v e   l o c a t i o n   t h a t  
"ink" i s  t o  s tar t  i n  IMB. 

SAMPLE, TEST, ANALYZER 

Flag  used t o   i n d i c a t e  
exis tence of an i n f l e c t i o n  
point .  

INFLEX, B@TH 

KB 

KCB 

Abbreviation  for  keyboard 
button . SAMPLE 

Abbreviation  for  keyboard 
change button. 

SAMPLE 

Lower limit f o r   t e s t i n g  
cu rva tu re   i n   i n f l ec t ion  
point  computation. 

INFLEX 

Pointer   used  for   terminat ion 
of  processing. 

PURGE, MERGE L L a s t  

LSort 

Lthis  

mdist 

Po in te r   i n to  SgRT t a b l e .  ~~PTIMIZE 

PURGE, MERGE, DTREE,  GTREE, 
GCHECK 

MINPTS 

Pointer   used  for   var ious 
purposes . 
Minimum value  of  square  of 
computed d is tance  between 
two points .  

The p o i n t e r   t o   t h e   n e x t   s t r o k e  
at t h e   s a v e   l e v e l   i n   t h e  l i s t  
of   successor   s t rokes   in   the  
dict ionary.  

DEFInJE , SEARCHS , PURGE, 
COMPACT, MERGE, DTREE , 
GCHECK , RELINK 

NLink 

Number of  strokes.  G R I D  , ANALYZER, DEFITJE rJ s 
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TERM - 
PlV 

PChar 

MEANING 

Overflow f l ag .  

REFERENCE 

MERGE 

PURGE Output   charac te r   def in i t ions  
t o  be  purged  from  dictionary. 

pix 

plim 

PG 

PSW 

Test   value  for   index.  STRWX 

XflVER, MINPTG 

KERGE 

G R I D  

Test value  for   index.  

Purge  f lag.  

RANE T a b l e t   s t y l u s   t i p  
switch. 

Feature   s torage  locat ion.  X~VER 

Test value  for   index.  MINPTS 

Minimum rectangle  surrounding 
argument; e i t h e r  a f ea tu re   o r  
an   en t i r e   s t roke .  

SRQLE, TEST, ANALYZER, 

~ ~ A R C H D  
INFLEX, B@TH, X ~ V E R ,  

ANALYZER, B(bTH, SEARCHED Center  of minimum rec tangle  
( s e e  R(x ) ) .  

Rc Recognition  count  kept  in 
dict ionary  for   each  success-  
f u l  match made with t h e  
assoc ia ted   en t ry ,  

ANALYZER PURGE, MJIRGE, 
RELINK 

Symbol used to   denote   an   input  
s t roke ,  

s SAMPLE,  TEST 

5-1, 52 

s a v f z  

Flags e PURGE 

XgVER Temporary s to rage   fo r   f ea tu re  
count . 
Temporary s torage  f o r  index p.  s avp 

scrubf lae  Flag used t o   i n d i c a t e  whether 
o r  not  an  input  stroke i s  t o  
be   in te rpre ted  as an  erasure. 

sip, Flag. ~~PTIMIZE 
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SMflg 

SP)RTL 

SORTR 

sw1 

sw2 

TERM MEANING 

Size ( x )  Size  (height  and width)  of 

- 
rectangle  surrounding 
argument ( c a l l  R(x) ) . 

SLink The p o i n t e r   t o   t h e  first 
. leg i t imate   successor   s t roke  
for   mul t i - s t roke   charac te rs  
i n  a d i c t iona ry   de f in i t i on ,  

SLBC The p o i n t e r   t o   t h e   n e x t  
avai lable   successor   s t roke 
e n t r y   i n   t h e   d i c t i o n a r y .  

Smoothing flag',  set  i n  
con t ro l  word of   display  buffer  
in   Input  Memory t o  enable  or 
disable  smoothing. 

Ent ry   in  SORT t a b l e  composed 
o f   s t roke   l eve l  and associated 
d e f i n i t i o n ,  

Dict ionary  pointer  from SORT 
t a b l e   f o r  SORTL item, 

The program  switch i n  G R I D  
t h a t  i s  set t o   t h e   a p p r o p r i a t e  
func t ion   acco rd ing   t o   t he   va lue  
of psw and T t h e  time delay. 

It has   the   va lue  I G N ,  meaning 
" ignore   the   t ab le t" ;  TB, meaning 
"post   only  the  current   posi t ion 
o f   t he  pen i n  IMB a t  TB" ; and 
I N K ,  meaning "filter and post  
t h e   p a t h   o f   t h e  pen on t h e  
t a b l e t  as long as psw i s  on 
and  there  i s  room i n   t h e  
buffer"  , 

The program  switch i n  G R I D  t h a t  
enables or disables  smoothing. 
It has   t he   va lues  of "on" and 
"off' '   according t o  SMFLG. 

d B  

REFERENCE 

INFLEX,  SEARCHD 

DEFINE,  SEARCHS,  PURGE, 
CflMPACT, DTREE, GCHECK, 
RELINK 

DEFINE, PURGE, COMPACT, 
MERGE 

G R I D ,  SAMPLE 

P)PTIMIZE 

Q~PTIMIZE 

G R I D  

G R I D  

TEST 
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TERM PEANING - REFERENCE 

t  or  temp  A  temporary  storage. STROKE, OPTIMIZE 
tbeg 

'r D 

TD ' 

TD* 

Thresh 

tmax 

tmore 

xtry 

Pointer to  the  beginning  of  ANALYZER,  STROKE 
a stroke. 

The  time  delay  set  in  IMB  by  GRID 
the  calling  program to specify 
when  GRID  shall  give up control 
after  a  psw  "off"  is  detected. 
Time  is  specified  in  units  of 
.25 sec. 

An intermediate  storage  for  TD.  GRID 

The  computed  value  for  use  by  GRID 
GRID  to  effect  the  time  delay 
test  based  upon  a  clock  that 
increments  in  units  other 
than .25 sec, 

Recognition  count  threshold.  PURGE 
Dictionary  entries  with  a 
recognition  count  less  than 
the  threshold  are  removed  from 
the  dictionary, 

Pointer  to  one  beyond  the  last  RXALYZER,  STRmKE 
entry of  tablet  inputs in DB. 

Flag  used  for  terninating  ANALYZER 
processing in TEST  mode of 
ANALYZER 1 

Individual  coordinates of GRID,  STRflKE 
points  making  up  input 
strokes  stored  in  DB. 

Individual  coordinates  of  STRflKE,  BOTH,  INFLEX, 
points  making  up  input XOVER 
strokes  stored  in PTS table. 

Flag  used to indicate  success XWER, MINPTS 
or failure  of  loop or inter- 
section  test, 
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ADDENDUM B: EXAMPLE OF OPTIMIZE 

Figure  B-1  represents a,sample dictionary  before  and  after OPTIMIZE. Figures 
B-2  through  B-22  present  the  contents  of  the  dictionary  and  other  table(;  at 
successive  stages  of  the  optimize  process.  Strokes  are  represented  symbolically 
in  the  first  column  of  the  dictionary  (labeled  "Feature");  at  each  dictionary 
level,  strokes  represented  by  the  same  symbol  are  identical.  For  this  sample 
dictionary,  three  dictionary  entries  are  deleted,  and  nine  new  character 
definitions  are  added.  In  the  table  below,  entries  above  the  double  line 
represent  dictionary  definitions  before  optimize,  while  entries  below  'the 
double  line  are  those  added  by  optimize. 

Table B-1. Stroke Entries €or Sample Dictionary 
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0 

1 
2 

3 

534 
5 05 

0 

0 

511 I J  M 0 1 508 

a. DICT before optimize 

4 

Feature Def SLink mink 
0 i i 
1 0 0 
2 I ,  1 5 0 9  0 

b. DICT after optimize 

c. Tree Diagram of original Dictionary d. P e e  of Optimized Dictionary 

Figure B-1. Sample Dictionary Before and After Optimization 

as 



DICT DICTE 

SORT 

I i: 
Figure B-2. Step 1. of  Optimization 

LTAE 

3 

The f i r s t - l e v e l   s e c t i o n  of t h e  SORT t a b l e  was made. M'RXE was appl ied   to   each  
d i c t iona ry  f irst  s t roke   ( s t rokes  1-3). LSort  points to SORTO, the   t op   b racke t  

of the   sec t ion .  SORTG i s  the  bot tom  bracket .  
1 
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DICT  DICTE 

Feature Def SLink NLink DGLlnk DGroup DE9 DMark 
~ 

"" ~ 

0 0 
I 

I 1 5 09 0 0 1 

/ I =? 
~ 

~ 

0 2 

- 
I 2 504 0 
\ 2 507 0 

.. 
U 

U . 

GROUP SORT LTAB 

0 0 

1 1 

2 2 2 

3 3 3 
4 4 4 
5 5 

6 
7 
8 

Figure B-3. Step  2 of Optimization 

GROUPl was formed a t   l e v e l  1; i t s  members are s t roke  and  stroke2  (each i s  the  

first s t roke  of a 4-stroke "14"). The group  character i s  '1'. L G r o u p l  po in ts  

t o  GROUPl, the   cur ren t  GROUP en t ry  a t  l e v e l  1. The r ema in ing   f i r s t - l eve l  SORT 

section  has  been  compacted; SORT is  now i t s  bottom  bracket.  Note t h a t   i f   s t r o k e  

had been  defined as a d iv ide  sign, the  group charac te r  would be "(J1", and f u r t h e r  

work on t h i s  family (Figicres B-4 through B-19) would  have  been  aborted. 

3 

2 3 
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C R O W  SORT  LTAB 

0 0 

1 1 1 

2 2 2 

3 3 3 
4 4 4 
5 5 

6 
7 
8 

Figure B-4. Step 3 of Optimization 

A second-level SORT section was made. "REE was applied to stroke and stroke2, 

the members of C;ROUP1. 
3 
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DICT  DICTE 

GROW 

o> 

1 0 

4' 
5 1  

SORT 

50rt1 Sortr 

0 0  I O  1 0  0 

LTAB 

LGroup LSort 

0 I O  

2 : I  

3 0  0 0 3 
h 4 

5- 

Figure B-5. Step 4 of Optimization 

11101 

GROUP2 at level 2 was  formed. Its members, stroke and stroke 

the  second  stroke of a 4-stroke "M". GROW2 is a successor to GROUPl; its group 

character  is "a2'' . 

509 506' are each 
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r -  

DICT DICTE 

GROUP 

0 
1 

2 

3 
4 

5 

SORT  LTAB 

LGroup LSort 

0 

1 1 

2 2 

3 3 
4 4 

5 
6 
7 
8 

Figure €3-6. Step 5 of Optimization 

A t h i r d - l e v e l  SORT sec t ion  was made. DTREE w a s  app l i ed   t o   s t roke  and 

s t roke  t h e  members of mOUP 
509  

506' 2'  
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DICT  DICTE 

GROUP 

0 

1 

2 

3 
4 

5' 

SORT 

Figure B-7. Step 6 of Optimization 

LTAB 

1 

2 

3 
4 

GROUP was formed at  level 3; its  single member is  stroke GROUP is a 3 
successor to GROUP2; its group character  is "N". 

3 507 
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DICT DICTE 

CROUP 

0 

1 

2 

3 
4 

5 

Figure B-8. 

SORT 

1 50rt1 I Sor t r  1 1 
0 0 1  0 1  0 

2 

Step 7 of Optimization 

LTAB 

LGroup  LSort  

1 

2 

3 
4 

A fourth-level SORT section was formed. DTREE was applied to stroke 
only member of GROUP Stroke has  no successors in the dictionary, therefore 

the SORT section is empty. 

507’ the 

3 ’  507 
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DICT DICTE 

GROUP 

Ch m a i n  GSLinlc GNLink 
0 0 1 0  l o l o  

C I 

Figure B-9. 

SORT LTAB 

LGroup LSort 

0 

1 1 

2 2 

3 3 
4 4 

Step 8 of  Optimization 

GROUP at level 3 was  formed;  its  members are stroke and stroke 

was added to the successor chain of GROUP2; the chain now contains GROUP 

and GROUP The group character of GROUP4 is "0 " Stroke and stroke 

are each third  strokes of a 4-stroke I 'M' ' .  

4 510 505' GR0up4 
4 

3' 2 '  510 5 05 
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DICT  DICTE 

Def SLink NLink DGLink DGroup DE& Dkrk 

I -i -7 

GROUP 

U 
? 
N 
M . . -. 

1 -5: 2 

505 0 3 

.! O . 0 

Ch G N L i n k  GSLink GChsin 
L 

0 r o  0 0 0 
1 

1 1  0 2 3 
2 0 4 5 0 9  "2 

1 

4 p'+q"l 
5 

Figure B-10. 

SORT 

Sort1 Sortr  

1 

2 
I I 

3 -  0 0 0 

7 
8 

Step 9 of Optimization 

LTAB 

LGroup LSort 

1 

2 

3 
4 

A fourth-level SORT section was made. DTREE was applied to stroke and 
stroke  the members of GROUP4. 

510 

505' 

95 
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DICT DICTE 

I 2 504 0 0 4 
/ O2 507 0 0 2 

(J 

- 

I N 0 505 0 3 
\ M 0 0 -  504 5 I 

GROW 

Ch G N L i n k  GSLink CChain 

0 0 0 0 0 

1 1 3 2 0 

2 a  2 5 09 4 0 

SORT 

0 

1 

2 

3 
4 

5 
6 
7 
8 

Figure B-13. Step 12 of Optimization 

LTAB 

2 

3 
4 

The SORT sections at levels 4, 3, and 2 are found to  be empty, and the level 
counter is stepped back to level 1. Formation of the first group tree is 
complete. 
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I 

DICT DICTE 

Ch G N L i n k  GSLink GChain 

0 

0 2 3 1 1 
0 0 0 0 

2 ' J  2 0 4 509 
4 

3 ,  
3 5 510 4 =  , 2  

0 0 507 N 

0 

Figure €3-14. Step 13 of Optimization 

Procedure GCHECK was applied  to GROUP1, but performs no  operation on a first- 
level group. GCHECK was then applied to GROUP2; stroke was marked  as 
identical  to stroke 

506 
509' 
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GROUP 

ch m a i n  GSLink  GNLink 

0 0 0 0 0 

SORT 

1 50rt1 I Sortr 
1 

0 1   0 1  0 

1 - 1  1 

0 1  0 0 

1ta13 

LGroup LSort 

Figure B-15. Step 14  of Optimization 

GCHECK was appl ied  to  GROUP4, the  first successor  to GROUP Stroke i n  

GROUP ( the  other   successor   to  GROW2) was marked as ident ica l   to   s t roke  3 510 
i n  GROW4. GROUP was merged with GROUP4, and entry of ,the GROUP t ab le  i s  

now dead ( there   a re  no poin ters   to  it). The group character of QIOW4 was 

changed from "0 '' t o  "N" because GROUP I s  character was "N". 

2' 507 

3 3 

2 3 
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DICl' DICTE 

GROUP SORT 

r " Ch I GChain 1 GSLink I GNLink 1 I 50rt1 I Sortr 

I 3 r-5 I 509 I 4 1  0 

0 

Figure B-16. 

EEH 3 4 

7 
8 ee13 
Step  15 of Optimization 

LTAB 

LGroup LSort 

GCHECK was a p p l i e d   t o  GROUP Stroke w a s  marked as i d e n t i c a l   t o   s t r o k e  

GCHECK has now been   appl ied   to  a l l  groups i n   t h e   t r e e .  
5' 504 508' 
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GROUP 

Ch GNLink GSLink m a i n  
"" 
"" 

0 
0 2 3 1 1 

0 0 0 0 

1 

2 

3 

SORT  LTAB 

t 1 

1 LGroup I Mort  I 

"l 3 4 

Figure B-17. Step 16 of  Optimization 

Procedure FELINK was app l i ed   t o  GROUPl. S t r o k e   i n  t h i s  group was redefined 

from "a I' t o   t he   g roup   cha rac t e r  "1". The d ic t ionary   successor   cha in   to  

members of GROUP contains   only  s t roke 509; s t roke  which i s  i d e n t i c a l   t o  

s t roke  was not   included  in   the  successor   chain,   but  was marked f o r   d e l e t i o n .  

3 
2 

1 506' 

509' 
The SLinks  of  both menibers of GROUPl p o i n t   t o  the comon successor chain. 
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GROUP SORT LTAB 

0 0 

1 1 

2 2 2 

3 3 3 
4 4 4 

5 5 
6 
7 
8 

Figure B-18. Step  17 of Optimization 

RELINK was a p p l i e d   t o  GROUP2. The dict ionary  successor   chain t o  GROUP2 members 

contains   s t roke and  stroke510-  Stroke which i s  i d e n t i c a l  t o  s t roke  

i s  marked f o r   d e l e t i o n .  
505 5 07' 510" 
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DICT DICTE 

GROUP F l  GChain GSLink G N L i n k  

Figure B-19. 

SORT LTAB 

2 

3 
4 

Step 18 of Optimization 

mINK was a p p l i e d   t o  GROUP4. Both menibers of GROUP4 ( s t roke  5 10 and  stroke 5 05 

were redefined from "02" t o  the  group  character "N". The dict ionary  successor  

chain  which i s  common to   bo th   s t roke  and  stroke  contains  stroke  and 

and  strokeSll.  StrokeSo4,  identical  to  stroke5o8, was marked fo r  de l e t ion .  

RELINK was then   appl ied   to  GROUP The successor  chain for i t s  members i s  

empty. A11 groups  have  been  relinked;  processing of th i s   d i c t iona ry   f ami ly  is 
completed. 

5 10 505 5 08 

5'  
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DICT  DICTE 

/ N 508 5 05 5 05 4 510 1 

\ M 0 5 1 1  504 5 
\ 0 2 505 0 506 2 

/ N 508 0 507 4 

DICT SORT LTAB 

0 0 

1 1 

2 2 2 

3 3 3 
4 4 4 
5 5 

6 
7 
8 

Figure B-20. Step 19 of Optimization 

Processing of the  next dictionary family  has begun. A new GROTJpl was  formed 
from  the  first-level SORT section.  Strokel  is  the only  member of this group. 
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DICT DICTE 

GROW SORT  LTAB 

0 

1 1 

2 2 

3 3 
4 4 
5 
6 
7 
8 

Figure B-21. S t ep  20 of Optimization 

A second-level SORT sec t ion  was made by  applying DTRElF t o   s t r o k e l ,  t he  only 

member of GROUPl. The SORT sec t ion  i s  empty,  and the  new group tree i s  complete. 

Because GROUP has no successor  groups, G m E  and REGINK are   not   operated,   and 

processing of t h e  second  family i s  complete. The f i r s t - l e v e l  SORT sec t ion  i s  
also empty, so there are no  more d i c t iona ry  families to   p rocess .  

1 
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DICT  DICTE 

k u r e  

' 
mark DE& DGroup DGLink mink SLink D e f  

0 
1 0 a 
2 0 5og 1 I 

GROW SORT LTAB 

0 0 

1 1 

2 2 2 

3 3 3 
4 4 4 
5 5 

6 
7 
8 

F'igure B-22. Final   Resul t  of Optimization 

Procedure COMPACT has been  operated.  Stroke5o4,  stroke and stroke507 were 
deleted.   Stroke was moved down and  became s t roke  The SLink of s t roke  

which pointed t o  s t roke  now po in t s   t o   s t roke  507' 

506 
505 507' 509" 

505 ' 
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( l a s t  page) 

ADDENDUM C;: NEW TECHNOLOGY 

I t  i s  d i f f i c u l t  t o  say   wha t ,   i n   pa r t i cu la r ,   abou t   t h i s  program l i e s  wi th in  
the realm of  new technology.   Rather   than  specif ic   a lgori thms  or   solut ions 
to nart icular   problems,  it i s  the   genera l   approach   tha t  i s  unique--the 
" combination - - - - " . - . of   ex i s t ing  methodology t h a t  is new. 

A t  -the  actual  working level of t h e  program,  two t h i n g s   i n   p a r t i c u l a r  are 
d i f f e r e n t  from earlier approaches t o   c h a r a c t e r   r e c o g n i t i o n .  One i s  the   f ea tu re -  
extract ion  technique,   including  corner-detect ion;   the  other  i s  t h e   u s e  of t h e  
d ic t ionary  t o  provide  separation  between  adjacent  characters,   instead of some 
other  measare. 

108 NASA-Langley, 1969 - e CR-126 
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