11 research outputs found

    BAC Library of T. pallidum DNA in E. coli

    No full text
    Treponema pallidum subspecies pallidum (Nichols) chromosomal DNA was used to construct a large insert bacterial artificial chromosome (BAC) library in Escherichia coli DH10B using the pBeloBAC11 cloning vector; 678 individual insert termini of 339 BAC clones (13.9 x coverage) were sequenced and the cloned chromosomal region in each clone was determined by comparison to the genomic sequence. A single 15.6-kb region of the T. pallidum chromosome was missing in the BAC library, between bp 248727 and 264323. In addition to the 12 open reading frames (ORFs) coded by this region, one additional ORF (TP0596) was not cloned as an intact gene. Altogether, 13 predicted T. pallidum ORFs (1.25% of the total) were incomplete or missing in the library. Three of 338 clones mapped by restriction enzyme digestion had detectable deletions and one clone had a detectable insertion within the insert. Of mapped clones, 19 were selected to represent the minimal set of E. coli BAC clones covering 1026 of the total 1040 (98.7%) predicted T. pallidum ORFs. Using this minimal set of clones, at least 12 T. pallidum proteins were shown to react with pooled sera from rabbits immunized with T. pallidum, indicating that at least some T. pallidum genes are transcribed and expressed in E. coli

    Transcriptome of Treponema pallidum: Gene Expression Profile during Experimental Rabbit Infection

    No full text
    RNA transcript levels in the syphilis spirochete Treponema pallidum subsp. pallidum (Nichols) isolated from experimentally infected rabbits were determined by the use of DNA microarray technology. This characterization of the T. pallidum transcriptome during experimental infection provides further insight into the importance of gene expression levels for the survival and pathogenesis of this bacterium

    High-Throughput Plasmid Content Analysis of Borrelia burgdorferi B31 by Using Luminex Multiplex Technology▿ †

    No full text
    Borrelia burgdorferi, the causative agent of Lyme disease in North America, is an invasive pathogen that causes persistent multiorgan manifestations in humans and other mammals. Genetic studies of this bacterium are complicated by the presence of multiple plasmid replicons, many of which are readily lost during in vitro culture. The analysis of B. burgdorferi plasmid content by plasmid-specific PCR and agarose gel electrophoresis or other existing techniques is informative, but these techniques are cumbersome and challenging to perform in a high-throughput manner. In this study, a PCR-based Luminex assay was developed for determination of the plasmid content of the strain B. burgdorferi B31. This multiplex, high-throughput method allows simultaneous detection of the plasmid contents of many B. burgdorferi strains in a 96-well format. The procedure was used to evaluate the occurrence of plasmid loss in 44 low-passage B. burgdorferi B31 clones and in a library of over 4,000 signature-tagged mutagenesis (STM) transposon mutant clones. This analysis indicated that only 40% of the clones contained all plasmids, with (in order of decreasing frequency) lp5, lp56, lp28-1, lp25, cp9, lp28-4, lp28-2, and lp21 being the most commonly missing plasmids. These results further emphasize the need for careful plasmid analysis in Lyme disease Borrelia studies. Adaptations of this approach may also be useful in the evaluation of plasmid content and chromosomal gene variations in additional Lyme disease Borrelia strains and other organisms with variable genomes and in the correlation of these genetic differences with pathogenesis and other biological properties

    Genome Scale Identification of Treponema pallidum Antigens

    No full text
    Antibody responses for 882 of the 1,039 proteins in the proteome of Treponema pallidum were examined. Sera collected from infected rabbits were used to systematically identify 106 antigenic proteins, including 22 previously identified antigens and 84 novel antigens. Additionally, sera collected from rabbits throughout the course of infection demonstrated a progression in the breadth and intensity of humoral immunoreactivity against a representative panel of T. pallidum antigens

    Reactivity of Antibodies from Syphilis Patients to a Protein Array Representing the Treponema pallidum Proteome

    No full text
    To identify antigens important in the human immune response to syphilis, the serum antibody reactivity of syphilitic patients was examined with 908 of the 1,039 proteins in the proteome of Treponema pallidum subsp. pallidum using a protein array enzyme-linked immunosorbent assay. Thirty-four proteins exhibited significant reactivity when assayed with human sera from patients in the early latent stage of syphilis. A subset of antigens identified were further scrutinized for antibody reactivity at primary, secondary, and latent disease stages, and the results demonstrate that the humoral immune response to individual T. pallidum proteins develops at different rates during the time course of infection

    Genome Differences between Treponema pallidum subsp. pallidum Strain Nichols and T. paraluiscuniculi Strain Cuniculi A▿ †

    No full text
    The genome of Treponema paraluiscuniculi strain Cuniculi A was compared to the genome of the syphilis spirochete Treponema pallidum subsp. pallidum strain Nichols using DNA microarray hybridization, whole-genome fingerprinting, and DNA sequencing. A DNA microarray of T. pallidum subsp. pallidum Nichols containing all 1,039 predicted open reading frame PCR products was used to identify deletions and major sequence changes in the Cuniculi A genome. Using these approaches, deletions, insertions, and prominent sequence changes were found in 38 gene homologs and six intergenic regions of the Cuniculi A genome when it was compared to the genome of T. pallidum subsp. pallidum Nichols. Most of the observed differences were localized in tpr loci and the vicinity of these loci. In addition, 14 other genes were found to contain frameshift mutations resulting in major changes in protein sequences. Analysis of restriction target sites representing 0.34% of the total genome length and DNA sequencing of three PCR products (0.46% of the total genome length) amplified from Cuniculi A chromosomal regions and comparison to the Nichols genome revealed a sequence similarity of 98.6 to 99.3%. These results are consistent with a close genetic relationship among the T. pallidum strains and subspecies and a strong, but relatively divergent connection between the human and rabbit pathogens

    The Thermophilic, Homohexameric Aminopeptidase of Borrelia burgdorferi Is a Member of the M29 Family of Metallopeptidases

    No full text
    Proteases are implicated in several aspects of the physiology of microorganisms, as well as in host-pathogen interactions. Aminopeptidases are also emerging as novel drug targets in infectious agents. In this study, we have characterized an aminopeptidase from the spirochete Borrelia burgdorferi, the causative agent of Lyme disease. The aminopeptidolytic activity was identified in cell extracts from B. burgdorferi by using the substrate leucine-7-amido-4-methylcoumarin. A protein displaying this activity was purified from B. burgdorferi by a two-step chromatographic procedure, yielding a ∼300-kDa homo-oligomeric enzyme formed by monomers of ∼50 kDa. Gel enzymography experiments showed that enzymatic activity depends on the oligomeric structure of the protease but does not involve interchain disulfide bonds. The enzyme was identified by peptide mass fingerprinting as the putative aminopeptidase II of B. burgdorferi, encoded by the gene BB0069. It shares significant identity to members of the M29/T family of metallopeptidase, is sensitive to bestatin, has a neutral pH optimum, and displays maximal activity at 60°C. Its activity is 1.75-fold higher at the temperature of the mammalian host than at that of the insect host of the pathogen. The activity of this thermophilic aminopeptidase of B. burgdorferi (TAP(Bb)) depends on Zn(2+), and temperatures over 70°C promoted its inactivation through a transition from the hexameric state to the monomeric state. Since B. burgdorferi is deficient in pathways for amino acid synthesis, TAP(Bb) could play a role in supplying required amino acids. Alternatively, the enzyme could be involved in peptide and/or protein processing
    corecore