10,620 research outputs found
Noncommutative symmetric functions and Laplace operators for classical Lie algebras
New systems of Laplace (Casimir) operators for the orthogonal and symplectic
Lie algebras are constructed. The operators are expressed in terms of paths in
graphs related to matrices formed by the generators of these Lie algebras with
the use of some properties of the noncommutative symmetric functions associated
with a matrix. The decomposition of the Sklyanin determinant into a product of
quasi-determinants play the main role in the construction. Analogous
decomposition for the quantum determinant provides an alternative proof of the
known construction for the Lie algebra gl(N).Comment: 25 page
Holonomy groups and W-symmetries
Irreducible sigma models, i.e. those for which the partition function does
not factorise, are defined on Riemannian spaces with irreducible holonomy
groups. These special geometries are characterised by the existence of
covariantly constant forms which in turn give rise to symmetries of the
supersymmetric sigma model actions. The Poisson bracket algebra of the
corresponding currents is a W-algebra. Extended supersymmetries arise as
special cases.Comment: pages 2
Changes in the sensitivity of solar p-mode frequency shifts to activity over three solar cycles
Low-degree solar p-mode observations from the long-lived Birmingham Solar
Oscillations Network (BiSON) stretch back further than any other single
helioseismic data set. Results from BiSON have suggested that the response of
the mode frequency to solar activity levels may be different in different
cycles. In order to check whether such changes can also be seen at higher
degrees, we compare the response of medium-degree solar p-modes to activity
levels across three solar cycles using data from Big Bear Solar Observatory
(BBSO), Global Oscillation Network Group (GONG), Michelson Doppler Imager (MDI)
and Helioseismic and Magnetic Imager (HMI), by examining the shifts in the mode
frequencies and their sensitivity to solar activity levels. We compare these
shifts and sensitivities with those from radial modes from BiSON. We find that
the medium-degree data show small but significant systematic differences
between the cycles, with solar cycle 24 showing a frequency shift about 10 per
cent larger than cycle 23 for the same change in activity as determined by the
10.7 cm radio flux. This may support the idea that there have been changes in
the magnetic properties of the shallow subsurface layers of the Sun that have
the strongest influence on the frequency shifts.Comment: 6 pages, 3 figures, accepted by MNRAS 3rd July 201
Kappa-symmetric SL(2,R) covariant D-brane actions
A superspace formulation of IIB supergravity which includes the field
strengths of the duals of the usual physical one, three and five-form field
strengths as well as the eleven-form field strength is given. The
superembedding formalism is used to construct kappa-symmetric SL(2,R) covariant
D-brane actions in an arbitrary supergravity background.Comment: 20 pages. Minor clarification in text. References adde
BPS Solitons in M5-Brane Worldvolume Theory with Constant Three-Form Field
We study BPS solutions for a self-dual string and a neutral string in
M5-brane worldvolume theory with constant three-form field. We further
generalize such solitons to superpose with a calibrated surface. We also study
a traveling wave on a calibrated surface in the constant three-form field
background.Comment: 12 pages, LaTeX, minor correction, added referenc
Multiplicity, Invariants and Tensor Product Decomposition of Tame Representations of U(\infty)
The structure of r-fold tensor products of irreducible tame representations
of the inductive limit U(\infty) of unitary groups U(n) are are described,
versions of contragredient representations and invariants are realized on
Bargmann-Segal-Fock spaces.Comment: 48 pages, LaTeX file, to appear in J. Math. Phy
Assembling large, complex environmental metagenomes
The large volumes of sequencing data required to sample complex environments
deeply pose new challenges to sequence analysis approaches. De novo metagenomic
assembly effectively reduces the total amount of data to be analyzed but
requires significant computational resources. We apply two pre-assembly
filtering approaches, digital normalization and partitioning, to make large
metagenome assemblies more comput\ ationaly tractable. Using a human gut mock
community dataset, we demonstrate that these methods result in assemblies
nearly identical to assemblies from unprocessed data. We then assemble two
large soil metagenomes from matched Iowa corn and native prairie soils. The
predicted functional content and phylogenetic origin of the assembled contigs
indicate significant taxonomic differences despite similar function. The
assembly strategies presented are generic and can be extended to any
metagenome; full source code is freely available under a BSD license.Comment: Includes supporting informatio
Maximal supergravity in D=10: forms, Borcherds algebras and superspace cohomology
We give a very simple derivation of the forms of supergravity from
supersymmetry and SL(2,\bbR) (for IIB). Using superspace cohomology we show
that, if the Bianchi identities for the physical fields are satisfied, the
(consistent) Bianchi identities for all of the higher-rank forms must be
identically satisfied, and that there are no possible gauge-trivial Bianchi
identities () except for exact eleven-forms. We also show that the
degrees of the forms can be extended beyond the spacetime limit, and that the
representations they fall into agree with those predicted from Borcherds
algebras. In IIA there are even-rank RR forms, including a non-zero
twelve-form, while in IIB there are non-trivial Bianchi identities for
thirteen-forms even though these forms are identically zero in supergravity. It
is speculated that these higher-rank forms could be non-zero when higher-order
string corrections are included.Comment: 15 pages. Published version. Some clarification of the tex
- …
