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1. Introduction

IIB supergravity was written down in components in [1, 2] and in superspace in [3]. As is

well-known, the bosonic fields are the graviton, two spin 0 fields, two two-form potentials

and a four-form potential with a self-dual five-form field strength. The duals of these are

important for couplings to branes; a superspace formulation including these extra fields

was given in [4], while the D-brane actions were written down in supergravity backgrounds

in [5, 6]. Recently [7], it has been shown that there are also a number of ten-form potentials,

transforming under the doublet and quartet representations of SL(2,R), whose presence

is in accordance with extended symmetry considerations [8]. In this paper we first extend

the superspace formalism to include the ten-form potentials and then go on to use it

to construct kappa-symmetric SL(2,R) covariant actions for D-branes in arbitrary IIB

supergravity backgrounds.
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The superspace formalism has some advantages over the component formalism for

discussing the ten-form potentials. This is because, in superspace, the associated eleven-

form field strengths do not vanish so that it is possible to give a gauge-invariant discussion

with manifest supersymmetry. We shall write down the components of all the superspace

form field strengths in the next section, including the doublet of eleven-forms which is not

needed for the D-branes under discussion here. We use a formalism with local SO(2) and

global SL(2,R) symmetries.

Duality-symmetric actions have been given for strings [9], superstrings [10] and three-

branes [11 – 14], the latter with the aid of the results of [15, 16], while an attempt to carry

out a similar construction for five-branes was made in [17]. More recently, SL(2,R) invari-

ant actions for the bosonic sector of all D-branes have been derived [18]. The remainder

of the current paper is devoted to the construction of kappa-symmetric SL(2,R) covariant

actions for D-branes using the superembedding formalism [19 – 21]. This was first applied

to D-branes in [22]. It will be shown, given the standard superembedding constraints,

that supersymmetry completely determines the dynamics of D-branes and the associated

actions.

2. IIB supergeometry

We begin by discussing the superspace geometry of IIB supergravity including the eleven-

form field strengths implied by the results of [7]. We use a real basis for the spinors, Eαi,

where α = 1, . . . 16 is a chiral ten-dimensional spinor index, while i = 1, 2 is a Spin(2)

spinor index. The connection, Ω, and curvature, R, correspondingly take their values in

spin(1, 9) ⊕ spin(2). For example,

Ωαi
βj = δi

jΩα
β + δα

βεi
jQ , (2.1)

where Q is the spin(2) connection and

Ωα
β =

1

4
(γab)α

βΩab , (2.2)

with Ωab being the Lorentz or spin(1, 9) connection. Small latin indices from the beginning

of the alphabet denote Lorentz vector indices as usual.

We shall also use SO(2) vector indices which will be denoted by r, s, etc, while SL(2,R)

doublet indices will be denoted R,S, etc. The scalar fields U carry indices Ur
R, i.e. (local)

SO(2) acts to the left and (rigid) SL(2,R) to the right. The dimension zero torsion is

Tαiβj
c = −iδij(γ

c)αβ . (2.3)

The non-zero dimension one-half torsion is

Tαiβj
γk = −i

(
(γa)αβ(γa)

γδ − 2δ(α
γδβ)

δ
)

Λδij
k , (2.4)

where Λijk is totally symmetric and traceless.1

1We suppress the spinor index on Λ in the text.
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The forms consist of a triplet of one-forms, a doublet of three-forms, a singlet five-form,

a doublet of seven-forms, a triplet of nine-forms and a quadruplet of eleven-forms. There is

also a doublet of eleven-forms which does not feature in the brane actions we shall consider

here. These can be written as SL(2,R) representations or as SO(2) representations, the

two being related by the scalar matrix U . For example, the three-form is a doublet FR,

and Fr = Ur
RFR. We can also use U to define a metric by

MRS := (U−1)R
r(U−1)S

sδrs . (2.5)

The derivative of U is given by

(dUU−1)r
s = (F (1))r

s + 2εr
sQ (2.6)

where Q is the U(1) connection and F
(1)
rs is symmetric and traceless, δrsF

(1)
rs = 0.

In this notation the Bianchis are (with the form ranks as superscripts)

dF
(1)
RS = 0

dF
(3)
R = 0

dF (5) = −εRSF
(3)
R F

(3)
S

dF
(7)
R = F

(3)
R F (5)

dF
(9)
RS = F

(3)
(R F

(7)
S)

dF
(11)
RST = F

(3)
(R F

(9)
ST ) . (2.7)

Note that the tracelessness condition for F (1) becomes MRSF
(1)
RS = 0 in the SL(2,R) basis;

in fact, one can show that dMRS = −2F
(1)
RS . It is straightforward to rewrite the Bianchis

in the SO(2) basis; for each index one gets a factor of F (1). For example,

DF (3)
r = −(F (1))r

sF (3)
s . (2.8)

The dimension zero components of the forms, in SO(2) notation, are

F
(3)
rαiβjc = −i(τr)ij(γc)αβ

F
(5)
αiβjcde = iεij(γcde)αβ

F
(7)
rαiβjc1...c5

= i(τ̃r)ij(γc1...c5)αβ

F
(9)
rsαiβjc1...c7

=
i

2
εijδrs(γc1...c7)αβ

F
(11)
rstαiβjc1...c9

=
i

2
δ(rs(τ̃t))ij(γc1...c9)αβ , (2.9)

where τr = 1√
2
(σ3, σ1) are the SO(2) gamma-matrices and τ̃r = εrsτ

s. The other com-

ponents of the forms are not needed for the D-branes but we shall give them here for

completeness.
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At dimension one-half we have

F
(1)
rsαi = −2i(τrΛs)iα

F
(3)
rαib1b2

= −i (γb1b2Λri)α

F
(5)
αib1...b4

= 0

F
(7)
rαib1...b6

= −i
(
γb1...b6Λ̃ri

)
α

F
(9)
rsαib1...b8

= −2i
(
γb1...b8τ(rΛ̃s)

)
iα

F
(11)
rstαib1...b10

= −3i

2

(
γb1...b10δ(rsΛ̃t)i

)
α

. (2.10)

The field Λri is the dimension one half spinor field; it can be written

Λri = (τr)
jkΛijk (2.11)

where Λijk is the field appearing in the dimension one-half torsion.

We have also defined

Λ̃ri := εrsΛ
s
i = εijΛr

j . (2.12)

The dimension one components of the one-, three- and five-form field strengths are

the superfields whose leading components are the (covariantised) spacetime field strengths

(with δrsF
(1)
rsa = 0). The seven-form field strengths are essentially the duals of the three-

forms,

F (7)
ra1...a7

=
1

3!
εrsεa1...a7b1b2b3F

(3)sb1b2b3 , (2.13)

while the nine-form dimension one components are

F (9)
rsa1...a9

= −εr
tεa1...a9bF

(1)b
st − 3iεijΛriγa1...a9

Λsj . (2.14)

The eleven-forms are of course identically zero at dimension one, while the five-form is

self-dual up to non-linear terms,

F (5)
a1...a5

=
1

5!
εa1...a5b1...b5F

(5)b1...b5 + iδrsεijΛriγa1...a5
Λsj . (2.15)

The non-vanishing components of the eleven-form doublet, F
(11)
r , are

F
(11)
rαiβjc1...c9

= i(τr)ij(γc1...c9)αβ

F
(11)
rαic1...c10

= i
27

23
(γc1...c10Λri)α . (2.16)

This form satisfies the Bianchi identity

dF
(11)
R =

4

23

(
εST F

(3)
S F

(9)
TR − 3

4
F (5)F

(7)
R

)
(2.17)

in the SL(2,R) basis. This result implies that the doublet of ten-form potentials transforms

under the gauge transformations of some of the other p-form potentials, in agreement with
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the extended symmetry considerations of [8]. In [7] these additional transformations are

not present, but this is not a contradiction since any ten-form gauge transformation can be

written as the exterior derivative of a nine-form gauge transformation in ten-dimensional

spacetime.2

3. Superembeddings

3.1 Charges

In order to discuss branes and superembeddings in an SL(2,R) covariant way we follow

reference [18] and introduce a pair of constant charge vectors (qR, q̃R). They can be nor-

malised so that

qRεRS q̃S = 2 . (3.1)

We define qr := qR(U−1)R
r and q̃r := q̃R(U−1)R

r, although note that q̃r is not the dual of

qr. Let (V r, Ṽ r), Ṽ r := εrsVs, be an orthonormal pair of vectors;3 they can be chosen such

that

qr = aV r

q̃r = −2

a
Ṽ r + bV r , (3.2)

where a and b are functions of the scalars given by

MRSqRqS = a2

MRS q̃Rq̃S = b2 +
4

a2
. (3.3)

The b-term in the expression for q̃r is necessary because qR and q̃R are constant. We

also introduce an orthonormal pair of Spin(2) vectors (vi, ṽi), ṽi := εijvj, such that

Vr =
√

2(τr)ijv
ivj

Ṽr =
√

2(τr)ijv
iṽj . (3.4)

In the purely bosonic sector of the theory it is not necessary to introduce the unit vectors

vi and V r [18], but it is useful in the superembedding context as we shall see.

3.2 The superembedding matrix

In the superembedding formalism the worldvolume of the brane is a superspace M whose

odd dimension is half that of the target space M . Super, even, odd indices are respectively

denoted by capital, latin, greek letters. Letters from the beginning of the alphabet refer

to preferred bases while indices form the middle refer to coordinate bases. Indices for

the target space are underlined while normal indices are primed. The preferred coframes

are denoted by EA = (Ea, Eα), where EA = dzMEM
A, and similarly the frames are

2We thank Mees de Roo and Diederik Roost for a discussion of this point.
3Note that the V

r, as well as the v
i introduced in (3.4), are not constant.
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EA = EA
M∂M where EA

M is the inverse of the supervielbein EM
A. The embedding

matrix is the derivative of the embedding map with respect to the preferred basis,

EA
A := EA

M∂MzMEM
A . (3.5)

The embedding constraint is

Eα
a = 0 . (3.6)

For most branes this implies the equations of motion. For D-branes there is a worldvolume

gauge field A whose modified field strength F obeys the constraint

FαB = 0 . (3.7)

These two constraints are always imposed and imply the equations of motion. In the

IIB case we write Eα = Eαi; the remainder of the superembedding matrix can then be

parametrised in the following way:

Ea
b = ua

b

Eα
βj = uα

βvj + hα
γuγ

β ṽj

Ea
βj = λa

γuγ
β ṽj . (3.8)

where uα
β is an element of Spin(1, 9), (ua

b, ua′
b) together give the corresponding element

of the Lorentz group, and where λa
β can be thought of as the bosonic derivative of the

transverse fermions in the brane multiplet. The field hα
β is related to F in a non-linear

fashion to be discussed below.

3.3 Torsion equation

In order to work out the consequences of the superembedding constraints we shall need the

torsion equation:

2∇[AEB]
C + TAB

CEC
C = (−1)A(B+B)EB

BEA
ATAB

C , (3.9)

and the Bianchi identity for F , dF = −H, where H is a target space three-form to be

defined shortly. In components, this Bianchi identity is

3
(
∇[AFBC] + T[AB

DF|D|C]

)
= −HABC , (3.10)

where H here is pulled back from the target space to the worldvolume using the embedding

matrix.

We define H to be

H := qRF
(3)
R = qrF (3)

r . (3.11)

The dimension zero component of the torsion equation, projected along the brane,

implies

Tαβ
c = −i(γc + hγchT )αβ , (3.12)
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while the normal projection gives

(γc′ + hγc′hT )αβ = 0 . (3.13)

The dimension zero component of the F Bianchi gives

Tαβ
dFdc = ia′(γc − hγchT )αβ ; a′ :=

a√
2

(3.14)

which, together with (3.12), gives the relation between h and F :

hγahT = γbLb
a , (3.15)

where

La
b :=

(
(1 + F ′)(1 −F ′)−1

)
a

b , F ′
ab :=

1

a′
Fab , (3.16)

is an element of the Lorentz group SO(1, p).4

These equations are solved by

h = h0γ(p+1) , (3.17)

where

γ(p+1) :=
1

(p + 1)!
εa1...ap+1

γa1...ap+1 , (3.18)

and where h0 is an element of Spin(1, p) corresponding to L. Explicitly [25],

h0 =
1

L0

∑ 1

2mm!
γa1b1...ambmF ′

a1b1 . . .F ′
ambm

, (3.19)

with

L0 =
√

−det (ηab + F ′
ab) . (3.20)

4. D-brane actions

4.1 General construction

The GS action for a brane can be constructed from the superembedding formalism using

the following recipe [26] (see [27] for a related approach which was applied to D-branes

in [28]). For each p-brane there is a closed (p + 2)-form W which can be written as dLWZ,

where LWZ is the Wess-Zumino term regarded as a (p + 1)-form, and also as dK where K

is a tensorial d-form on the brane (d = p + 1). Therefore Ld = K −LWZ is a closed d-form

on the brane which can be used to construct the action using the superform (ectoplasm)

method [29]. The action is

S =

∫

Mo

L (4.1)

4This relation between h and F was first observed for the D9-brane in [23]; it is discussed for a general

IIB D-brane in [24].
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where Mo is the body of M , i.e. the usual bosonic worldvolume, and

L :=
1

(p + 1)!
dxmd . . . dxm1Lm1...md

(x, 0) . (4.2)

The construction guarantees that the action is invariant under local supersymmetry tran-

formations on the brane, i.e. kappa-symmetry, and also under reparametrisations of M0.

This can be seen as follows: under an infinitesimal diffeomorphism of M generated by a

vector field X we have

δLd = dιXLd + iXdLd . (4.3)

Evaluating this equation at θ = 0 and using the fact that dLd = 0 we see that L will

transform as a total derivative under such a transformation. We can identify the even

and odd leading components of X as the parameters of worldvolume diffeomorphisms and

kappa-symmetry respectively. For kappa-symmetry,

X = καEα = καEα
αEα := καEα . (4.4)

The above definition of κα ensures that it satisfies κ = κP where P is the projector from

the odd tangent space of the target superspace onto the odd tangent space of the brane.

As P is a projector it can be written as P = 1
2(1+Γ) where Γ2 = 1, so that κ = 1

2κ(1+Γ).

To show that W is exact it is convenient to introduce the notion of an (r, s) form, one

which has r even and s odd indices with respect to a preferred basis [30]. The exterior

derivative can be split into four parts d0 , d1 , t0 , t1 with respective bidigrees (1, 0), (0, 1),

(−1, 2), (2,−1). d0 and d1 are even and odd derivatives, although they include torsion

components as well, while t0 and t1 are algebraic operations involving the dimension zero

and three-halves components of the torsion. From d2 = 0 we find

t20 = d1t0 + t0d1 = 0 , (4.5)

together with some other equations which we shall not need. Since t20 = 0 there are coho-

mology groups Hr,s
t whose elements are (r, s) forms which are t0-closed but not exact [30].

The lowest non-vanishing component of W is Wp,2; as dW = 0, we have t0Wp,2 = 0.

It is not difficult to show (see appendix B) that Hp,2
t = 0 from which we deduce that

Wp,2 = t0Kp+1,0 for some Kp+1,0. The only other non-vanishing component of W is Wp+1,1;

it satisfies

d1Wp,2 + t0Wp+1,1 = 0 . (4.6)

Since Wp,2 = t0Kp+1,0 and d1t0 + t0d1 = 0 we find

t0(Wp+1,1 − d1Kp+1,0) = 0 . (4.7)

It is straightforward to see that there are no non-trivial solutions to this equation from

which we conclude that

Wp+1,1 = d1Kp+1,0 . (4.8)

We have therefore shown that, if the lowest non-vanishing component of W is Wp,2

then W = dK, where K = Kp+1,0. If we can construct a suitable closed (p+2) form W we

will automatically have shown that there is a corresponding GS action. To complete the

picture we shall therefore only have to evaluate the dimension zero component of W = dK

to show that K is indeed the Dirac-Born-Infeld form, LDBI .

– 8 –
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4.2 RR forms

The Wess-Zumino form for a Dp-brane is given by the (p + 2)-form component of

W = e−F ∑

n

G(2n+1) , (4.9)

where the “RR” forms G are pull-backs of forms on the target space. They satisfy the

Bianchi identities

dG(2n+1) = HG(2n−1) (4.10)

which ensure that dW = 0. They can be written in terms of potentials as

G(2n+1) = dC(2n) + HC(2n−2) , (4.11)

The forms are as follows:

G(1) = d

(
b

a

)

G(3) = −q̃rF (3)
r +

b

a
H

G(5) = F (5)

G(7) = qrF (7)
r

G(9) = qrqsF (9)
rs

G(11) = qrqsqtF
(11)
rst . (4.12)

We can read off the dimension zero components straightforwardly from (2.9). They are

G
(3)
αiβjc =

2i

a
V r(τ̃r)ij(γc)αβ

G
(5)
αiβjcde = iεij(γcde)αβ

G
(7)
αiβjc1...c5

= iaV r(τ̃r)ij(γc1...c5)αβ

G
(9)
αiβjc1...c7

=
ia2

2
εij(γc1...c7)αβ

G
(11)
αiβjc1...c9

=
ia3

2
V r(τ̃r)ij(γc1...c9)αβ . (4.13)

If one sets qr = e
φ

2 (
√

2, 0), where φ is the dilaton, one recovers the standard form for

the dimension zero RR fields in the Einstein frame,

(G(2n+1))2n−1,2 = ie(n−2)φ

2 Eβ2Eα1(γ(2n−1))αβ . (4.14)

4.3 Kappa-symmetry

According to the general argument given previously, the closed (p+2)-form W gives rise to

the GS action, and the latter is automatically kappa-symmetric. In this section we verify

explicitly that K = LDBI , where

LDBI = fL0 ε(p+1) . (4.15)
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The function f is an SL(2,R)-invariant function of the scalars, to be determined later, L0

is the Born-Infeld function (3.20) and ε(p+1) is the bosonic volume form,

ε(p+1) :=
1

(p + 1)!
Eap+1 . . . Ea1εa1...ap+1

. (4.16)

We shall only need to show that

Wp,2 = (dLDBI)p,2 . (4.17)

A short calculation yields

(dLDBI)p,2 = − i

2
fL0εaE

βEα((hγa + γa(h−1)T )hT )αβ , (4.18)

where

εa :=
1

p!
Ebp . . . Eb1εab1...bp

. (4.19)

Pulling back the dimension zero Gs and concentrating on the terms with EβEα we

find (∑
G(2n+1)

)
p,2

= −iEβEα
∑

((a′)n−2γ(2n−1)hT )αβ . (4.20)

Thus we have

(
e−F ∑

G
)

p,2
=

= −iEβEα
∑(

(−1)m(a′)n−2

2mm!(2n − 1)!
Ea2m . . . Ea1Eb2n−1 . . . Eb1(γb1...b2n−1

hT )αβFa1...a2m

)

= iEβEα
∑ (−1)m(a′)n−2

2mm!(2n − 1)!
εcε

ca1...a2mb1...b2n−1(γb1...b2n−1
hT )αβFa1...a2m

= iEβEα
∑ (a′)n−2

2mm!
εa(γ

ab1...b2mγ(p+1)h
T )αβFb1...b2m

, (4.21)

where Fa1...a2m
:= F[a1a2

. . .Fa2m−1a2m], and where 2m + 2n = p + 1. Writing γ2m+1 =
1
2{γ, γ2m} and using the explicit formula for h we find

(
e−F ∑

G
)

p,2
= − i

2
fL0εaE

βEα((hγa + γa(h−1)T )hT )αβ , (4.22)

which is what we wanted to show. The function f is determined to be

f = (a′)
p−3

2 . (4.23)

This is in agreement with [18], although in the current approach it is determined by su-

persymmetry. On the face of it, there appears to be a conflict in the string case with the

tension formula given there, but this turns out to be due to the fact that the universal for-

mula given here goes with the action that contains a Born-Infeld field even for p = 1. We

shall see in section 5 that when this is eliminated this apparent disagreement disappears.
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In conclusion we have shown that the Green-Schwarz action

S =

∫

M0

(LDBI − LWZ) , (4.24)

where

LDBI = (a′)
p−3

2

√
−det (ηab + F ′

ab) ε(p+1) , (4.25)

and

LWZ =
(
e−F ∑

C(2n)
)

p+1
, (4.26)

and where the integrand is to be interpreted as in (4.1), is covariant under kappa-symmetry.

It is also manifestly SL(2,R)-invariant.

For the case p = 3, the bosonic part of the action (4.24) agrees with that given in [11 –

14], as discussed in [18], while the cases with p > 3 have not, too our knowledge, been

discussed in the literature previously. For the string case, p = 1, the relation of our

formalism to the standard SL(2,R)-covariant string will be discussed in the next section.

5. (p, q) Strings

If we specialise to the case of strings, the above construction gives the SL(2,R) covariant

string action,

S =

∫
d2x

√
−det gE


(a′)−1

√

1 −
(

F

a′

)2

+
b

a
F


 −

∫
C(2) , (5.1)

where we have expanded the determinant and defined F := F01. The equation of motion

for the gauge field gives

(a′)−3

(
1 −

(
F

a′

)2
)−1/2

F +
b

a
= −k , (5.2)

where k is a constant which can be absorbed by shifting b → b + ka. This in turn can be

seen to be equivalent to shifing q̃R → q̃R + kqR (see below). We will therefore set k = 0

and the above equation becomes

F = −ab

2

√
(a′)2 − F 2 . (5.3)

Solving for F we get

F =

√
2(a′)2b√
a2b2 + 4

. (5.4)

For the terms involving F in the action we thus get

(a′)−1

√

1 −
(

F

a′

)2

+
b

a
F = (a2b2 + 4)

F

a3b
=

1

2a′

√
a2b2 + 4 . (5.5)
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Using the fact that

b2 = q̃Mq̃T − 4/a2 (5.6)

we get

(a′)−1

√

1 −
(

F

a′

)2

+
b

a
F = − 1√

2

√
q̃Mq̃T . (5.7)

In the physical gauge M is given by

M =
1

τ2

(
1 −τ1

−τ1 |τ |2

)
= eφ

(
1 −C0

−C0 C2
0 + e−2φ

)
, (5.8)

where τ := C0 + ie−φ. Taking q̃R =
√

2(p, q) (this gives qR = −
√

2
(p2+q2)

(−q, p)), where p, q

here denote non-negative integers, we find

q̃Mq̃T = 2eφ(q2 − 2pqC0 + p2C0 + p2e−2φ)) = 2(eφ(p − qC0)
2 + q2e−φ) . (5.9)

Thus the action becomes

S = −
∫

d2x
√

(eφ(p − qC0)2 + q2e−φ)
√

−det gE −
∫

C(2) , (5.10)

which contains the appropriate expression for the tension of a (p, q)-string in the Einstein

frame [31]. The Wess-Zumino term satisfies

dC(2) = G(3) − H
b

a
= −q̃RF

(3)
R = −

√
2(pF

(3)
1 + qF

(3)
2 ) , (5.11)

which reduces to the correct couplings for an F- or D-string when (p, q) is (1, 0) or (0, 1).

6. Concluding remarks

In this article we have completed IIB supergravity theory in superspace by incorporating

all of the forms including the field strengths corresponding to the ten-form potentials

introduced in [7]. We then went on to use the superembedding formalism to construct

Green-Schwarz actions which are invariant under SL(2,R) as well as kappa symmetry.

Given the basic superembedding constraints, (3.6) and (3.7), this formalism, combined with

the superform method of constructing component actions from superspace, then determines

the desired actions in a systematic fashion.

The D-brane actions given here can be thought of as those that lie within the SL(2,R)

orbit of the usual D-brane actions. An interesting question is whether there might be

others. For example, it is known that there are additional D7-brane solutions of IIB

supergravity which are half-supersymmetric [32]. These branes correspond to couplings

to a nine-form field strength of the form qRSF
(9)
RS , where the matrix qRS is non-singular.

Another interesting question is whether the doublet of eleven-form field strengths have any

significance for brane physics.

It would be interesting to extend the results of this paper to other maximal super-

gravity theories where the complete sets of potentials are also known [33 – 35]. It may

also be possible to extend the formalism to the non-abelian case in the boundary fermion

formalism [36, 37], at least at the level of classical fermions.
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A. Conventions

The SO(2) formalism in this paper is related to the U(1) formalism of [3] in the following

way (see also [38]). For a Spin(2) vector y one writes

y± =
1√
2
(y1 ± iy2) , (A.1)

while for covectors one has

y± =
1√
2
(y1 ∓ iy2) . (A.2)

Thus the metric is off-diagonal in the complex basis,

δ+− = δ+− = 1 . (A.3)

The same conventions are used for SO(2) vectors except that each index now carries double

the charge; for example, a vector Y r has components (Y ++, Y −−) in the complex basis.

The components of the ε-tensors, εij and εrs are specified by

ε+− = ε++−− = i . (A.4)

In order to compare with [3] it is necessary to change Ea to −Ea and to change the signs

of F (3) and F (5). In this paper the summation convention for odd indices is

χαiραi = χα+ρα+ + χα−ρα− , (A.5)

whereas there is a minus sign for the second term in [3].

We have taken the matrix of scalars, in the physical gauge and in a real basis, to be

U =
1√
τ2

(
τ2 0

τ1 1

)
, (A.6)

where τ := C0 + ie−φ. This then gives M as in (5.8).
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B. Proof that H
p,2

t = 0

In the text it is stated that the cohomology group Hp,2
t = 0 for any Dp-brane. In this

appendix we sketch the proof. We wish to show that the equation t0Wp,2 = 0 only has

cohomologically trivial solutions of the form Wp,2 = t0Kp+1,0. Let T denote the dimension

zero torsion on the brane considered as a vector-valued (0, 2)-form and let W be the vector-

valued (0, 2)-form obtained from Wp,2 by dualising on the even indices. The equation to

be solved can then be written in the form

T
[a
(αβW

b]
γδ) = 0 , (B.1)

which we shall abbreviate to T × W = 0, and we want to show that W = TK for some

function K which is the dual of Kp+1,0. Note that T × W = −W × T . We first show

that the cohomology of T = γ is trivial; to do this one expands W in a basis of sym-

metric ten-dimensional gamma-matrices and then goes through (B.1) systematically one

representation at a time. It is straightforward to show that W = γK for some function K.

The second step is to extend this result to the full theory on the brane, for which T is

given by (3.12), perturbatively; that is, we expand both T and W in powers of Fab. Note

that this is the only possibility since Fab is the only covariant dimension zero field in the

problem. Thus we write

T = T0 + T1 + . . . , (B.2)

and similarly for W and K, although the latter has only even terms. We can normalise T

such that T0 = γ so that we have W0 = T0K0, where we could choose K0 = 1 if desired.

The proof is by induction; let us suppose that it holds up to the nth order, i.e.

Wn =
n∑

k=0

TkKn−k , (B.3)

then at the (n + 1)th order we have

T0 × Wn+1 +

n+1∑

k=1

Tk × Wn+1−k = 0 . (B.4)

Using (B.3) we can write the sum as

n+1∑

k=1

Tk × Wn+1−k =

n+1∑

k=1

Tk ×
n+1−k∑

l=0

TlKn+1−(k+l)

=

(
n+1∑

k=1

Tk ×
n+1−k∑

l=1

TlKn+1−(k+l)

)
−

(
T0 ×

n+1∑

k=1

TkKn+1−k

)
.(B.5)

In the first term on the right in the last line the sum over l can be extended up to n+1

if we define Km = 0 for m negative. We can then easily see that it vanishes by symmetry

since Tk × Tl = −Tl × Tk. Equation (B.4) therefore becomes

T0 ×
(

Wn+1 −
n+1∑

k=1

TkKn+1−k

)
= 0 , (B.6)
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which has solution

Wn+1 =

n+1∑

k=0

TkKn+1−k , (B.7)

as we have already argued that the cohomology of T0 is trivial. And this completes the

proof.

C. The SL(2, Z)-covariant superstring

The SL(2,Z)-covariant superstring action of Cederwall-Townsend [10] is, in SO(2) notation,

S =
1

2

∫
d2xλ (det gE + 2Frδ

rsFs) , (C.1)

where gE is the metric in the Einstein frame, λ is an auxiliary scalar field and Fr =
1
2εmnFrmn, m,n = 0, 1 being worldsheet coordinate indices. The doublet of modified field

strengths is defined as

Fr = Ur
R(dAR − BR) , (C.2)

where BR is the potential for F
(3)
R . We wish to integrate out one of the gauge-fields AR

and show that this reproduces the action given in (4.24), for the case p = 1.

We start by expanding Fr in the orthonormal basis (V r, Ṽ r);

Fr = Vr(V
sFs) + Ṽr(Ṽ

sFs) . (C.3)

Then we use (3.2) to express Vr (Ṽr) in terms of qr (q̃r). The expression in the

Lagrangian becomes

2Frδ
rsFs = 2((V rFr)

2 + (Ṽ rFr)
2) =

2

a2
F2 +

1

2
(−aF̃ + bF)2 , (C.4)

where qrFr = F and similarly for F̃ .

In order to integrate out the gauge-field corresponding to F̃ we define F̃ =

q̃Rεmn∂mARn = εmn∂mÃn, so that F̃ = F̃ − q̃rBr. To treat F̃ as independent we add

the term

µ(F̃ − εmn∂mÃn) = µ(F̃ + q̃rBr − εmn∂mÃn) (C.5)

to the Lagrangian, where µ is a Lagrange multiplier enforcing the constraint that F̃ be

closed. We can now set the variation of the action with respect to F̃ to zero. This gives

the equation

−aF̃ + bF =
2µ

aλ
. (C.6)

The equation of motion for Ã simply implies that µ is constant. Plugging these results

into the action and collecting terms according to their dependence on λ we get

S =

∫
d2x

(
λ

2

(
det gE + F ′2) − µ2

a2λ
+ µ

(
b

a
F + q̃rBr

))
. (C.7)
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Finally we eliminate λ by its equation of motion

λ =
µ

a′
(
−det gE −F ′2)−1/2

(C.8)

and we get

S =

∫
d2x

(
− µ

a′
√

−det gE −F ′2 + µ

(
b

a
F + q̃rBr

))
. (C.9)

Taking the constant µ to be −1, noting from (4.12) that q̃rBr = −1
2εmnC

(2)
mn and

writing

F ′ =
1

2
εmnF ′

mn =
√−gE

1

2
εabF ′

ab , (C.10)

we see that the action can be written as

S =

∫
d2x

√
−det gE (a′)−1

√

1 −
(

1

2
εabF ′

ab

)2

+

∫
(−C(0)F + C(2)) . (C.11)

This is easily seen to be precisely the action given in (4.24) when p = 1 by expansion

of the determinant in the DBI–term. This completes the proof of the equivalence of the

two actions.
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