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Abstract

We study BPS solutions for a self-dual string and a neutral string in M5-brane

worldvolume theory with constant three-form field. We further generalize such solitons

to superpose with a calibrated surface. We also study a traveling wave on a calibrated

surface in the constant three-form field background.
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1 Introduction

Recently, noncommutative theories have received renewed interest, after it is founded

out that noncommutative theories can be naturally realized in M-theory compactified

in the presence of constant three-form field background [1] and within string theories as

the worldvolume theory of D-brane with nonzero constant NS B-field [2, 3]. In the case

of D-brane with constant magnetic NS B-field, one can take a decoupling limit of the D-

brane worldvolume theory to achieve a noncommutative field theory with space/space

noncommutativity. However, in the case of electric NS B-field background, one cannot

take a zero slope limit in such a way that the noncommutativity parameter is nonzero

to obtain a field theory with space/time noncommutativity, since the electric NS B

field cannot be scaled to infinity due to its critical value beyond which the open string

parameters are not well-defined [4]. It is conjectured [4, 5] that nearby the critical

electric B field with an appropriate scaling limit a novel noncritical open string theory,

called noncommutative open string (NCOS) theory, which decouples from closed strings

(and therefore also gravity) in the bulk, emerges. It is conjectured [6, 7] that the strong

coupling limit of the NCOS theory is the so-called OM theory, which is the decoupled

(from gravity) theory of light open M2-brane ending on M5-brane in the constant

three-form field background.

It would be therefore interesting to study worldvolume solitons of the M5-brane with

constant 3-form field. The solitons of the brane worldvolume theories are interpreted

as the intersections of the interesting branes [8], with the intersection being the source

for the charge carried by the worldvolume soliton [9, 10, 11]. For example, the M5-

brane worldvolume soliton counterpart to the open M2-brane ending on M5-brane is

the self-dual string [12] and the three-brane soliton [13] on the M5-brane worldvolume is

interpreted as the three-brane intersection of intersecting two M5-branes. The solitons

in the D-brane worldvolume theory, i.e. BI solitons or BIons [14, 15, 12], with constant

NS B field were previously studied, for example, in Refs. [16, 17, 18, 19, 20]. In the

case of the zero-brane soliton, corresponding to fundamental or D string ending on

a D-brane, force on the endpoint due to nonzero constant NS B field is shown [16]

to cause the string to be tilted. The non-locality of the suspended string due to such

tilting is in accordance with the fact that the D-brane worldvolume is noncommutative,

which leads to uncertainty in measurement.

In this paper, we study the BPS self-dual string and neural (or instanton) string

solitons in the M5-brane worldvolume theory with constant three-form field, and their

generalization on calibrated surfaces. We also show that traveling wave on the cal-

ibrated surface with constant three-form field preserves supersymmetry. In study-

ing such worldvolume solitons, we follow the covariant equations of motion approach

[21, 22, 23] of M5-brane theory.
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2 Aspects of M5-Brane Worldvolume Theory

We discuss the relevant aspect of the M5-brane worldvolume theory [21, 22, 23, 24, 25,

26] for the purpose of fixing and defining notation. The convention for indices is as

follows. The indices for the target space are underlined. The indices from the beginning

[middle] of the alphabet refer to the tangent space [coordinate space] indices. The Latin

[Greek] indices are for the bosonic [fermionic] coordinates. The primed indices are for

directions normal to the M5-brane worldvolume. So, the coordinates of the target and

the worldvolume superspaces are respectively ZM = (Xm, Θµ) and zM = (xm, θµ), and,

for example, the target space index a [α] is decomposed as a = (a, a′) with a = 0, 1, ..., 5

and a′ = 1′, ..., 5′ [α = (α, α′) with α = 1, ..., 16 and α′ = 1′, ..., 16′]. The fermionic

indices α and α′, running from 1 to 16, are alternatively written respectively as α i

and α
i when appearing as subscript, and respectively as α i and i

α when appearing as

superscript, with α and i running from 1 to 4. For example, Θα′ → Θi
α, Θα → Θαi

and u β′
α → u j

αiβ. We denote the vielbeins of the target and the M5-brane worldvolume

superspaces as E
A

M and E A
M , respectively. We denote the embedding matrix Ẽ

A
A =

E M
A ∂MZME

A
M with a tilde to avoid confusion with vielbeins. The worldvolume theory

of the M5-brane is described by the (2, 0) tensor multiplet containing five scalars Xa′
,

sixteen fermions Θα′
and a self-dual field strength habc. Here, Xm′

and Θα′
are identified

as the transverse components of the target superspace coordinates (Xm, Θµ).

In this paper, we consider an M5-brane embedded in flat eleven-dimensional target

space with the metric ĝmn = ηmn. Just as in the case of D-brane with the NS B-field,

the induced metric gmn = ηmn∂mXm∂nXn on the M5-brane worldvolume does not

correspond to the metric on the M5-brane felt by the open M2-brane in the presence of

the background three-form field strengthHmnp. Here, the gauge invariant field strength

Hmnp of the M5-brane worldvolume two-form potential bmn given by

Hmnp = ∂[mbnp] + ∂mXm∂nXn∂pX
pCmnp, (1)

where Cmnp is the three-form potential in the eleven-dimensional supergravity, is related

to the self-dual field strength habc as

Hmnp = E a
m E b

n E c
p m d

b m e
c hade = e a

me b
n e c

p (m−1) e
c habe. (2)

The self-duality condition on habc, habc = 1
6
εabcdefh

def , is translated to the following

non-linear self-duality condition on Hmnp:
√−det g

6
εmnpqrsHqrs =

1 + K

2
(G−1) r

mHnpr, (3)

where K ≡
√

1 + 1
24
HmnpgmqgnrgpsHqrs. It is suggested in Ref. [27] that it is the metric

Gmn = E a
m E b

n ηab associated with E a
m that is felt by an open M2-brane ending on the
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M5-brane. The vielbein e a
m associated with gmn is related to E a

m as E a
m = e b

m(m−1) a
b ,

where m b
a ≡ δ b

a − 2hacdh
bcd. So, the open M2-brane metric Gmn is expressed in terms

of gmn and Hmnp as

Gmn =
1 + K

2K

(
gmn +

1

4
Hmpqg

prgqsHnrs

)
. (4)

As expected, the open M2-brane metric Gmn becomes gmn when Hmnp = 0 and reduces

to the open string metric [3] on a D-brane upon double dimensional reduction.

The equations of motion of the M5-brane can be obtained by analyzing the torsion

equation subject to the superembedding condition Ẽ a
α = 0. In a flat target superspace

background in the static gauge, where the fermionic field Θα = (Θα, Θα′
) is zero and

Xm = xm, the bosonic equations of motion are

Gmn∇m∇nXa′
= 0,

Gmn∇mHnpq = 0, (5)

where the connection in the covariant derivative ∇m is defined from gmn, i.e. Γ p
mn =

∂m∂nXa′
∂qX

b′
gpqδa′b′ .

We are particularly interested in solutions that preserve part of supersymmetry. The

condition that the static gauge condition Θα = 0 be preserved under the combined rigid

supersymmetry transformation of a flat target superspace and super-reparametrization

of the worldvolume induced on the target superspace leads to the following form of the

supersymmetry transformation for the fermions:

δΘα′
= −εα(Ẽ−1) β

α Ẽ α′
β , (6)

where the non-linearly realized symmetry parameterized by εα′
is set to zero. Making

use of the projection operators (Ẽ−1) β
α Ẽ

γ

β = 1
2
(1+Γ)

γ
α and (Ẽ−1) β′

α Ẽ
γ

β′ = 1
2
(1−Γ)

γ
α ,

one can put the variation (6) for Θα′
into the form:

δ̂Θα′ ≡ δΘγ′
(

1− Γ

2

) α′

γ′
= −1

2
εγΓ α′

γ . (7)

This has to be set to zero to make the condition Θα′
= 0 to be invariant under

the supersymmetry transformation. In terms of the bosonic fields of the M5-brane

worldvolume theory, the supersymmetry variation (7) is expressed as

δ̂Θ j
β = −1

2
εαi

[
det(e−1)∂mXa′

(γm)αβ(γa′) j
i

− 1

3!
det(e−1)∂m1X

a′
1∂m2X

a′
2∂m3X

a′
3(γm1m2m3)αβ(γa′

1a′
2a′

3
) j
i

+
1

5!
det(e−1)∂m1X

a′
1 · · ·∂m5X

a′
5(γm1...m5)αβ(γa′

1...a′
5
) j
i

3



−hm1m2m3∂m2X
a′
2∂m3X

a′
3(γm1)αβ(γa′

2a′
3
) j
i

−1

3
hm1m2m3(γm1m2m3)αβδ j

i

]
, (8)

where γm = δa
mγa.

It is the purpose of this paper to study solitons in the M5-brane worldvolume the-

ory in the constant three-form field H background. When H is constant, up to a

Lorentz transformation the nonzero components of H satisfying the non-linear self-

duality condition (3) are H012 and H345 [3, 27]. Equivalently, nonzero components of

the worldvolume field habc are

h012 = −h345 = h = constant, (9)

which corresponds to H012 = h
1+4h2 ≡ 1

4
sin θ and H345 = − h

1−4h2 = −1
4
tan θ, according

to Eq. (2). In the infinite momentum frame (boosted along the x5-direction), the

nonzero components of habc are

h012 = −h034 = −h512 = h534 = constant. (10)

The derivation of M5-brane solitons in the constant H background is along the same

line as the case with zero H background [12, 13, 26], except that one has to impose the

boundary condition (9) or (10) at the infinity of the worldvolume.

3 Self-Dual String

The self-dual string in the M5-brane worldvolume theory is interpreted as the boundary

of a M2-brane ending on a M5-brane:

M5 : 1 2 3 4 5
M2 : 1 6

(11)

All fields of the self-dual string soliton are independent of the worldvolume coordinates

(x0, x1) of the string soliton. We denote the four M5-brane worldvolume indices for the

directions transverse to the string soliton with tilde, i.e. ã, m̃ = 2, ..., 5. We let only one

of the scalar fields, which we choose X1′ ≡ φ, to be active. The bosonic worldvolume

field Ansatz for the string soliton is

X1′
= φ, h01ã = vã, hãb̃c̃ = εãb̃c̃d̃v

d̃, (12)

with the remaining components of habc vanishing, along with the boundary condition

h01ã = hδ2
ã at infinity.
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Substituting the field Ansatz (12) into Eq. (8), one obtains the following supersym-

metry variation of fermions Θ:

δ̂Θ = −1

2
ε

[
det(e−1)∂mφγmγ1′ − 2γ01

{
vm̃γm̃ + det(e−1)vm̃γm̃

}]
. (13)

If one requires spinors to satisfy the following constraint

ε = εγ01γ1′, (14)

then from the Killing spinor equation δ̂Θ = 0 one obtains the following Bogomol’nyi

condition on the fields:

vã =
1

2

δm̃
ã ∂m̃φ

1 +
√

1 + (∂m̃φ)2
, (15)

where (∂m̃φ)2 ≡ δm̃ñ∂m̃φ∂ñφ.

Making use of Eq. (2) along with the field Ansatz (12), one obtains the following

nonvanishing components of H:

H01m̃ =
1

1 + 4v2
e ã

m̃vã,

Hm̃ñp̃ =

√
1 + (∂m̃φ)2

1− 4v2
εm̃ñp̃q̃e

q̃
ã vã, (16)

where v2 ≡ δãb̃vãvb̃. The vielbein e a
m associated with the induced metric gmn on the

M5-brane worldvolume is given by (e a
m ) = diag(1, 1, e ã

m̃ ) with e ã
m̃ = δã

m̃ + c∂m̃∂ãφ,

where c ≡ (−1 +
√

1 + δm̃ñ∂m̃φ∂ñφ)/δm̃ñ∂m̃φ∂ñφ. These nonzero components of H
simplify to the following forms after the Bogomol’nyi condition (15) is substituted:

H01m̃ =
1

4
∂m̃φ,

Hm̃ñp̃ =
1

4
εm̃ñp̃q̃δ

q̃r̃∂r̃φ, (17)

where εm̃ñp̃q̃ = e ã
m̃ e b̃

ñ e c̃
p̃ e d̃

q̃ εãb̃c̃d̃.

To find the expression for the scalar φ, one has to solve the equation (5) for the scalar

X5′
= φ. It is shown [28] that generally the equation of motion Gmn∇m∇nXa′

= 0

for the scalar Xa′
implies Gmn∂m∂nXa′

= 0. Note, the worldvolume fields for self-dual

string solution are independent of the worldvolume coordinates x0 and x1. And it can

be shown by applying Eq. (15) that Gm̃ñ ∝ δm̃ñ. So, the scalar φ satisfies the flat

Laplace’s equation:

δm̃ñ∂m̃∂ñφ = 0. (18)
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From Eq. (17), one can see that the solution to Eq. (18), satisfying the boundary

condition H012 = h
1+4h2 = 1

4
sin θ at infinity, that describes array of strings with charge

QK located at xm̃ = ym̃
K is given by

φ = φ0 +
∑
K

2QK

|x− yK |2 + x2 sin θ. (19)

Due to the self-duality condition on H, the string at xm̃ = ym̃
K carries the same electric

and magnetic charges QE = QM = QK . From the second equation of Eq. (16) or

(17), one can see that the boundary condition H345 = − h
1−4h2 = −1

4
tan θ at infinity

is automatically satisfied by Eq. (19). From the expression (19) for the scalar φ, one

can see that the M2-brane is tilted towards the x2-direction due to the force felt by

the self-dual string at the boundary of the suspended M2-brane in the background of

constant H field. This force due to the constant H field is canceled by the tension of

the M2-brane.

By compactifying the above self-dual string solution along the x1-direction, one ob-

tains the following 0-brane soliton (BIon) on the D4-brane worldvolume in the constant

B field background studies in Refs. [16, 17]:

F0m̃ =
1

4
∂m̃φ, φ = φ0 +

∑
K

2QK

|x− yK |2 + x2 sin θ, (20)

where Fm̃ñ ≡ Hm̃ñ1. Dimensional reduction along, say, the x5-direction leads to the

following string soliton on the D4-brane worldvolume:

Fm̃ñ =
1

4
εm̃ñp̃δ

p̃q̃∂q̃φ, φ = φ0 +
∑
K

2QK

|x− yK |2 + x2 sin θ, (21)

where Fm̃ñ = Hm̃ñ5.

It is straightforward to show that a self-dual string on a calibrated surface in the

constant habc field background also preserves supersymmetry. The amount of super-

symmetry preserved depends on the type of calibrated surface. We denote XI as the

scalars associated with the calibrated surface and, as above, X1′
= φ is the scalar of

the self-dual string soliton. The supersymmetry variation of the fermion is given by

δ̂Θ = −1

2
ε

[{
det(e−1)∂mXIγmγI

− 1

3!
det(e−1)∂m1X

I1∂m2X
I2∂m3X

I3γm1m2m3γI1I2I3

+
1

5!
det(e−1)∂m1X

I1 · · ·∂m5X
I5γm1...m5γI1...I5

}

+det(e−1)∂mφγmγ1′ − 2γ01
(
vm̃γm̃ + det(e−1)vm̃γm̃

)]
. (22)

The self-dual string soliton on the calibrated surface preserves supersymmetry, if it

satisfies the Killing spinor equation δ̂Θ = 0 with nonzero ε. We rather consider two
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equations obtained by setting two separate terms, i.e. terms in the curly bracket of Eq.

(22) and the remaining terms, equal to zero. The first equation (associated with the

terms in the curly bracket) determines the amount of supersymmetry preserved by and

the geometry of the calibrated surface. The second equation is for the self-dual string

soliton on the calibrated surface. The amount of preserved supersymmetry can be

determined by considering the supersymmetry projectors of the associated intersecting

M5-brane configuration and of the added M2-brane. One can also add an M2-brane

to an intersecting M5-brane configuration without breaking additional supersymmetry,

if the supersymmetry projectors associated with M5-branes yield the supersymmetry

projector for the added M2-brane. The scalar φ no longer satisfies the flat Laplace’s

equation, but satisfies an equation determined by the curved metric of the calibrated

surface.

4 Neutral String

We consider the worldvolume soliton counterpart to the following target space config-

uration where M-wave travels along an longitudinal direction of an M5-brane:

M5 : 1 2 3 4 5
MW : 5

(23)

When the x5-direction is compactified, this configuration becomes a D0-brane in a D4-

brane, where the D0-brane is interpreted as an instanton of the D4-brane worldvolume

theory [29, 30]. The worldvolume soliton counterpart to (23) has no active scalar and

has non-vanishing H0m̃ñ and H5m̃ñ, where m̃, ñ = 1, 2, 3, 4. The nonzero component

H5m̃ñ = Fm̃ñ is (anti-) self-dual as a two-form in four-dimensional Euclidean space and

gives rise to a string-like soliton in the x5-direction. But such string-like soliton does

not carry charge of the H field. So, such soliton is called an instanton or a neutral

string. The corresponding bosonic worldvolume field Ansatz is

h0ãb̃ = ±h5ãb̃ ≡ Fãb̃, (24)

where ã, b̃ = 1, ..., 4 and all of the scalar fields Xa′
are set to zero (hence, the induced

metric is flat, gmn = ηmn). To consider an instanton string solution on the noncommu-

tative M5-brane worldvolume, one has to impose the boundary condition that hmnp is

nonzero constant at infinity. In order for the boundary condition to be compatible with

the field Ansatz (24), one has to go to the infinite momentum frame (through infinite

boost along the x5-direction), in which the nonzero components of hmnp at infinity are

given by Eq. (10). This boundary condition can be imposed on the field Ansatz (24)

only for the negative sign choice in Eq. (24), i.e. only when Fm̃ñ is anti-self-dual 2.

2The infinite boost along the negative x5-direction would lead to the boundary condition on habc

with opposite signs, and therefore select the self-dual Fm̃ñ (i.e. the positive sign in Eq. (24)).
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Then, the supersymmetry variation (8) of fermions takes the following form:

δ̂Θ = −1

2
εF m̃ñ(γ0m̃ñ − γ5m̃ñ). (25)

The resulting Killing spinor equation δ̂Θ = 0 can be satisfied, if we impose the following

constraint on spinors:

εγ0γ5 = ε. (26)

We show that a neutral string on a calibrated surface in the constant habc field back-

ground also preserves supersymmetry. For this purpose, it is convenient to introduce

the light-cone coordinates:

u =
1√
2
(x0 − x5), v =

1√
2
(x0 + x5). (27)

In terms of the light-cone coordinates, the boundary condition (10) on the habc field is

hu12 = −hu34 = constant, (28)

and the bosonic field Ansatz (24) with negative sign becomes

huãb̃ := F̄ãb̃. (29)

From Eq. (2), one can see that the only nonzero component of the corresponding H
field is Hum̃ñ = F̄m̃ñ. The supersymmetry variation of fermions is

δ̃Θ = −1

2
ε

[
F̄ m̃ñγvm̃ñ + F̄ m̃ñ∂m̃XI1∂ñXI2γvγI1I2

]
, (30)

where XI are scalars associated with the calibrated surface and ε is the spinor for

supersymmetry preserved by the calibrated surface, determined by setting the terms in

the curly bracket of Eq. (22) equal to zero. By imposing the spinor constraint εγu = 0,

one can set this supersymmetry variation to zero, making use of the relation γv = γu.

The possibility of having such supersymmetric configuration depends on whether the

supersymmetry projectors of the intersecting M5-brane configuration associated with

the calibrated surface yields the projector εγu = 0 (or εγ0γ5 = ε). Had one used the

boundary condition on habc corresponding to the infinitely boosted frame along the

negative x5-direction, one would have had a self-dual instanton string on a calibrated

surface with Hvm̃ñ := Ḡm̃ñ and with the associated spinor constraint εγv = 0.

5 Traveling Wave on Calibrated Surface

In this section we show that supersymmetric traveling wave on a calibrated surface

exists even in the nonzero constant habc field background. Traveling wave on the M5-

brane worldvolume is regarded as fluctuations in the shape of the calibrated surface.
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We consider the wave traveling in the x5-direction. For the purpose of studying trav-

eling wave, it is convenient to work with the light-cone coordinates (27) and constant

background habc field of the form (28) in the infinite momentum frame. We expect

that either purely left-moving or right-moving wave moving at the speed of light, i.e.

the case when scalar fields Xa′
do not depend on either u or v, preserves supersymme-

try. We consider the case when Xa′
are independent of v, i.e. ∂vX

a′
= 0. Then, the

supersymmetry transformation (8) reduces to the following form:

δ̂Θ = −1

2
ε

[
det(e−1)∂uX

a′
γuγa′

− 1

3!
det(e−1)∂uX

a′
1∂m2X

a′
2∂m3X

a′
3γum2m3γa′

1a′
2a′

3

+
1

5!
det(e−1)∂uX

a′
1∂m2X

a′
2 · · ·∂m5X

a′
5γum2...m5γa′

1...a′
5

−hvm2m3∂m2X
a′
2∂m3X

a′
3γvγa′

2a′
3

−1

3
hvm2m3γvm2m3

]
. (31)

This supersymmetry variation can be set to zero by imposing the spinor constraint

εγu = 0. So, traveling wave in the constant habc field background (28) with arbitrary

dependence of Xa′
on u preserves supersymmetry. The analysis of the case with no

dependence on u, i.e. ∂uX
a′

= 0, is along the same line. The corresponding supersym-

metry projector is εγv = 0 (or εγ0γ5 = −ε).

Note Added
While this work was being completed, there appeared the paper [31] which has

overlapping results with the section 3 of our paper but with slightly different derivation

of the self-dual string soliton from ours.
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