449 research outputs found

    Massive IIA supergravities

    Full text link
    We perform a systematic search for all possible massive deformations of IIA supergravity in ten dimensions. We show that there exist exactly two possibilities: Romans supergravity and Howe-Lambert-West supergravity. Along the way we give the full details of the ten-dimensional superspace formulation of the latter. The scalar superfield at canonical mass dimension zero (whose lowest component is the dilaton), present in both Romans and massless IIA supergravities, is not introduced from the outset but its existence follows from a certain integrability condition implied by the Bianchi identities. This fact leads to the possibility for a certain topological modification of massless IIA, reflecting an analogous situation in eleven dimensions.Comment: 35 pages; v2: typos corrected, added eq. (A4

    Kappa-symmetric Derivative Corrections to D-brane Dynamics

    Full text link
    We show how the superembedding formalism can be applied to construct manifestly kappa-symmetric higher derivative corrections for the D9-brane. We also show that all correction terms appear at even powers of the fundamental length scale ll. We explicitly construct the first potential correction, which corresponds to the kappa-symmetric version of the ∂4F4\partial^4 F^4, which one finds from the four-point amplitude of the open superstring.Comment: 20 pages. Minor changes, added reference

    Spinorial cohomology and maximally supersymmetric theories

    Full text link
    Fields in supersymmetric gauge theories may be seen as elements in a spinorial cohomology. We elaborate on this subject, specialising to maximally supersymmetric theories, where the superspace Bianchi identities, after suitable conventional constraints are imposed, put the theories on shell. In these cases, the spinorial cohomologies describe in a unified manner gauge transformations, fields and possible deformations of the models, e.g. string-related corrections in an alpha' expansion. Explicit cohomologies are calculated for super-Yang-Mills theory in D=10, for the N=(2,0) tensor multiplet in D=6 and for supergravity in D=11, in the latter case from the point of view of both the super-vielbein and the super-3-form potential. The techniques may shed light on some questions concerning the alpha'-corrected effective theories, and result in better understanding of the role of the 3-form in D=11 supergravity.Comment: 23 pp, plain tex. v2: Minor changes, references adde

    Worldline approach to vector and antisymmetric tensor fields

    Full text link
    The N=2 spinning particle action describes the propagation of antisymmetric tensor fields, including vector fields as a special case. In this paper we study the path integral quantization on a one-dimensional torus of the N=2 spinning particle coupled to spacetime gravity. The action has a local N=2 worldline supersymmetry with a gauged U(1) symmetry that includes a Chern-Simons coupling. Its quantization on the torus produces the one-loop effective action for a single antisymmetric tensor. We use this worldline representation to calculate the first few Seeley-DeWitt coefficients for antisymmetric tensor fields of arbitrary rank in arbitrary dimensions. As side results we obtain the correct trace anomaly of a spin 1 particle in four dimensions as well as exact duality relations between differential form gauge fields. This approach yields a drastic simplification over standard heat-kernel methods. It contains on top of the usual proper time a new modular parameter implementing the reduction to a single tensor field. Worldline methods are generically simpler and more efficient in perturbative computations then standard QFT Feynman rules. This is particularly evident when the coupling to gravity is considered.Comment: 30 pages, 5 figures, references adde

    Higher spin fields from a worldline perspective

    Get PDF
    Higher spin fields in four dimensions, and more generally conformal fields in arbitrary dimensions, can be described by spinning particle models with a gauged SO(N) extended supergravity on the worldline. We consider here the one-loop quantization of these models by studying the corresponding partition function on the one-dimensional torus. After gauge fixing the supergravity multiplet, the partition function reduces to an integral over the corresponding moduli space which is computed using orthogonal polynomial techniques. We obtain a compact formula which gives the number of physical degrees of freedom for all N in all dimensions. As an aside we compute the physical degrees of freedom of the SO(4) = SU(2)xSU(2) model with only a SU(2) factor gauged, which has attracted some interest in the literature.Comment: 21 page

    Gallbladder agenesis mimicking cholelithiasis in an adult

    Get PDF
    We present the case of a 24-year-old woman with morbid obesity who came to the emergency department with right upper quadrant abdominal pain associated with nausea and vomiting. Her workup included a right upper quadrant ultrasound suggestive of a small gallbladder with cholelithiasis without sonographic evidence of acute cholecystitis. She underwent attempted laparoscopic cholecystectomy with no identifiable gallbladder during surgery. Postsurgical cross-sectional imaging confirmed gallbladder agenesis. This case provides an example of a rare but convincing clinical and radiologic mimic of cholelithiasis. In certain cases of biliary colic and imaging revealing a small gallbladder, a magnetic resonance cholangiopancreatography may be warranted to evaluate gallbladder agenesis and avoid unnecessary surgery

    Tricritical Behavior of Two-Dimensional Scalar Field Theories

    Full text link
    We compute by Monte Carlo numerical simulations the critical exponents of two-dimensional scalar field theories at the λϕ6\lambda\phi^6 tricritical point. The results are in agreement with the Zamolodchikov conjecture based on conformal invariance.Comment: 13 pages, uuencode tar-compressed Postscript file, preprint numbers: IF/UFRJ/25/94, DFTUZ 94.06 and NYU--TH--94/10/0

    String Propagator: a Loop Space Representation

    Get PDF
    The string quantum kernel is normally written as a functional sum over the string coordinates and the world--sheet metrics. As an alternative to this quantum field--inspired approach, we study the closed bosonic string propagation amplitude in the functional space of loop configurations. This functional theory is based entirely on the Jacobi variational formulation of quantum mechanics, {\it without the use of a lattice approximation}. The corresponding Feynman path integral is weighed by a string action which is a {\it reparametrization invariant} version of the Schild action. We show that this path integral formulation is equivalent to a functional ``Schrodinger'' equation defined in loop--space. Finally, for a free string, we show that the path integral and the functional wave equation are {\it exactly } solvable.Comment: 15 pages, no figures, ReVTeX 3.

    Kappa-symmetric deformations of M5-brane dynamics

    Full text link
    We calculate the first supersymmetric and kappa-symmetric derivative deformation of the M5-brane worldvolume theory in a flat eleven-dimensional background. By applying cohomological techniques we obtain a deformation of the standard constraint of the superembedding formalism. The first possible deformation of the constraint and hence the equations of motion arises at cubic order in fields and fourth order in a fundamental length scale ll. The deformation is unique up to this order. In particular this rules out any induced Einstein-Hilbert terms on the worldvolume. We explicitly calculate corrections to the equations of motion for the tensor gauge supermultiplet.Comment: 17 pages. Additional comments in section
    • 

    corecore