1,280 research outputs found

    Traffic distribution and network capacity analysis in social opportunistic networks

    Get PDF
    Social opportunistic networks are intermittently connected mobile ad hoc networks (ICNs) that exploit human mobility to physically carry messages between disconnected parts of the network. Human mobility thus plays an essential role in the performance of forwarding protocols in the networks, and people's movements are in turn affected by their social interactions with each other. In this paper we present an analysis of the traffic distribution among the nodes of social opportunistic networks and its impact on network capacity. For our analysis, we use a human contact graph that represents a social network of individuals. We characterize the graph as a scale-free network and apply forwarding strategies based on the information required by a node to select relays for its messages, categorising this information either as isolated or complete network or local network knowledge. We use a social network property, centrality, for the forwarding strategies, additionally considering tie strength in the forwarding metric and investigate their impact on traffic distribution. We show that all the strategies result in unfair traffic distribution due to a strong non-random structure of the networks, where hub nodes process much more relay traffic than non-hub nodes. Finally, we present a mathematical model of network capacity as an upper-bound of network delivery performance where hub nodes' resources become the limiting factors, and show that including tie strength in the forwarding metric improves the network capacity

    An ISP and end-user cooperative intradomain routing algorithm

    Get PDF
    The continuous growth in volume of Internet traffic, including VoIP, IPTV and user-generated content, requires improved routing mechanisms that satisfy the requirements of both the Internet Service Providers (ISPs) that manage the network and the end-users that are the sources and sinks of data. The objectives of these two players are different, since ISPs are typically interested in ensuring optimised network utilisation and high throughput whereas end-users might require a low-delay or a high-bandwidth path. In this paper, we present our UAESR (Utilisation-Aware Edge Selected Routing) algorithm, which aims to satisfy both players' demands concurrently by selecting paths that are a good compromise between the two players' objectives. We demonstrate by simulation that this algorithm allows both actors achieve their goals. The results support our argument that our cooperative approach achieves effective network resource engineering at the same time as offering routing flexibility and good quality of service to end-users

    Making Outbound Route Selection Robust to Egress Point Failure

    Get PDF
    Offline inter-domain outbound Traffic Engineering (TE) can be formulated as an optimization problem whose objective is to determine primary egress points for traffic exiting a domain. However, when egress point failures happen, congestion may occur if secondary egress points are not carefully determined. In this paper, we formulate a bi-level outbound TE problem in order to make outbound route selection robust to egress point failures. We propose a tabu search heuristic to solve the problem and compare the performance to three alternative approaches. Simulation results demonstrate that the tabu search heuristic achieves the best performance in terms of our optimization objectives and also keeps traffic disruption to a minimum

    An empirical study on the interactions between ALTO-assisted P2P overlays and ISP networks

    Get PDF
    The recently proposed Application Layer Traffic Optimization (ALTO) framework has opened up a new dimension for Internet traffic management that is complementary to the traditional application-agnostic traffic engineering (AATE) solutions currently employed by ISPs. In this paper, we investigate how ALTO-assisted Peer-to-Peer (P2P) traffic management functions interact with the underlying AATE operations, given that there may exist different application-layer policies in the P2P overlay. By considering specific P2P peer selection behaviors on top of a traffic-engineered ISP network, we conduct a performance analysis on how the application and network-layer respective performance is influenced by different policies at the P2P side. Our empirical study offers significant insight for the future design and analysis of cross-layer network engineering approaches that involve multiple autonomous optimization entities with both consistent and non-consistent policies

    An Integrated Network Management Framework for Inter-domain Outbound Traffic Engineering

    Get PDF
    This paper proposes an integrated network management framework for inter-domain outbound traffic engineering. The framework consists of three functional blocks (monitoring, optimization and implementation) to make the outbound traffic engineering adaptive to network condition changes such as inter-domain traffic demand variation, inter-domain routing changes and link failures. The objective is to keep the inter-domain link utilization balanced under any of these changes while reducing service disruptions and reconfiguration overheads. Simulation results demonstrate that the proposed framework can achieve better load balancing with less service disruptions and re-configuration overheads in comparison to alternative approaches

    Joint optimization of intra- and inter-autonomous system traffic engineering

    Get PDF
    Abstract: Traffic Engineering (TE) involves network configuration in order to achieve optimal IP network performance. The existing literature considers intra- and inter-AS (Autonomous System) TE independently. However, if these two aspects are considered separately, the overall network performance may not be truly optimized. This is due to the interaction between intra and inter-AS TE, where a good solution of inter-AS TE may not be good for intra-AS TE. To remedy this situation, we propose a joint optimization of intra- and inter-AS TE in order to improve the overall network performance by simultaneously finding the best egress points for inter-AS traffic and the best routing scheme for intra-AS traffic. Three strategies are presented to attack the problem, sequential, nested and integrated optimization. Our evaluation shows that, in comparison to sequential and nested optimization, integrated optimization can significantly improve overall network performance by being able to accommodate approximately 30%-60% more traffic demand

    Joint Optimization of Intra- and Inter-Autonomous System Traffic Engineering

    Get PDF
    Traffic Engineering (TE) is used to optimize IP operational network performance. The existing literature generally considers intra- and inter-AS (Autonomous System) TE independently. However, the overall network performance may not be truly optimized when these aspects are considered separately. This is due to the interaction between intra- and inter-AS TE, where a solution of intra-AS TE may not be a good input to inter-AS TE and vice versa. To remedy this situation, we propose considering intra-AS aspects during inter-AS TE and vice versa. We propose a joint optimization of intra- and inter-AS TE to further improve the overall network performance by simultaneously finding the best egress points for the inter-AS traffic and the best routing scheme for the intra-AS traffic. Three strategies are presented to attack the problem, namely sequential, nested and integrated optimization. Our simulation study shows that, compared to sequential and nested optimization, integrated optimization can significantly improve the overall network performance by accommodating 30%-60% more traffic demands

    DogCatcher allows loop-friendly protein-protein ligation

    Get PDF
    There are many efficient ways to connect proteins at termini. However, connecting at a loop is difficult because of lower flexibility and variable environment. Here, we have developed DogCatcher, a protein that forms a spontaneous isopeptide bond with DogTag peptide. DogTag/DogCatcher was generated initially by splitting a Streptococcus pneumoniae adhesin. We optimized DogTag/DogCatcher through rational design and evolution, increasing reaction rate by 250-fold and establishing millimolar solubility of DogCatcher. When fused to a protein terminus, DogTag/DogCatcher reacts slower than SpyTag003/SpyCatcher003. However, inserted in loops of a fluorescent protein or enzyme, DogTag reacts much faster than SpyTag003. Like many membrane proteins, the ion channel TRPC5 has no surface-exposed termini. DogTag in a TRPC5 extracellular loop allowed normal calcium flux and specific covalent labeling on cells in 1 min. DogTag/DogCatcher reacts under diverse conditions, at nanomolar concentrations, and to 98% conversion. Loop-friendly ligation should expand the toolbox for creating protein architectures

    Imaging Trans-Cellular Neurexin-Neuroligin Interactions by Enzymatic Probe Ligation

    Get PDF
    Neurexin and neuroligin are transmembrane adhesion proteins that play an important role in organizing the neuronal synaptic cleft. Our lab previously reported a method for imaging the trans-synaptic binding of neurexin and neuroligin called BLINC (Biotin Labeling of INtercellular Contacts). In BLINC, biotin ligase (BirA) is fused to one protein while its 15-amino acid acceptor peptide substrate (AP) is fused to the binding partner. When the two fusion proteins interact across cellular junctions, BirA catalyzes the site-specific biotinylation of AP, which can be read out by staining with streptavidin-fluorophore conjugates. Here, we report that BLINC in neurons cannot be reproduced using the reporter constructs and labeling protocol previously described. We uncover the technical reasons for the lack of reproducibilty and then re-design the BLINC reporters and labeling protocol to achieve neurexin-neuroligin BLINC imaging in neuron cultures. In addition, we introduce a new method, based on lipoic acid ligase instead of biotin ligase, to image trans-cellular neurexin-neuroligin interactions in human embryonic kidney cells and in neuron cultures. This method, called ID-PRIME for Interaction-Dependent PRobe Incorporation Mediated by Enzymes, is more robust than BLINC due to higher surface expression of lipoic acid ligase fusion constructs, gives stronger and more localized labeling, and is more versatile than BLINC in terms of signal readout. ID-PRIME expands the toolkit of methods available to study trans-cellular protein-protein interactions in living systems.National Institutes of Health (U.S.) (DP1 OD003961
    corecore