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Abstract — In this paper we propose an efficient scheme for
supporting multi-path based in-network content caching
by leveraging Loop-Free Alternate (LFA) in IP routing.
The purpose is to enable clustered distribution of cached
content chunks at en-route routers between the content
source and the requester. In order to achieve caching
localization, we also introduce policies that limit the
maximum allowable distance between caching routers and
the final destination, which is known as caching radius.
The benefit of the scheme is to distribute contents locally
around interested receivers in a balanced manner. We
evaluated the proposed algorithm through simulations
based on the GEANT network topology. The performance
exhibited by the multi-path based caching scheme
outperforms conventional approaches based on single path
routing.
1. INTRODUCTION

The consumption of dramatically increasing volumes of
content objects in the Internet has stimulated research efforts
into the re-design of the underlying network architecture
which is expected to be content-oriented. In this case, the
primary effect of content consumption has put content at the
center of future design of the Internet. The rapid growth of
available content in the Internet has resulted in the birth of
several content delivery mechanisms, such as CDNs, P2P and
more recently ICNs (information centric networks). Compared
to the traditional application-layer paradigms, ICNs are
deemed to be more revolutionary that put content level
knowledge and intelligence at the network layer. A typical
example is that en-route routers have the capability to
store/cache content objects as they are being delivered. Most
well-known ICN architectures include CCN/NDN [7], DONA
[8] and PSIRP/PURSUIT in the literature.

In-network content caching has been a hot research topic in
the context of ICN research. The idea is to cache popular
content items within the network between the content server
and receivers. The WAVE scheme [3] focused on efficiently
populating network caches chunk-by-chunk of content to
improve content service performance. WAVE adopts a
window-based algorithm that is executed locally at each router
along the path between the content server and the client. At
each step, based on the popularity the number of chunks
(window) to be cached is increased. Its execution starts close
on directing content flows symmetrically. The authors of [4]
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proposed to use age of content measured by the distance from
the source of content, as a metric to achieve caching closer to
destinations. It uses age of content to decide whether content
can be cached and replaced. Content age is longer if its
distance from the server is higher. The longer age also
indicates higher popularity of content. Thus more popular
content can thus be stored closer to the destination router or
the edge of the network.

In this paper, we introduce a new in-network caching
scheme that allows content chunks to be cached in a clustered
manner along multiple paths towards interested receivers. The
motivation is to enable more routers nearby to have the
opportunity of being involved in caching content locally. We
achieve this by ensuring that the caching operation is initiated
by the neighbouring nodes of the receiver and then it further
expanded to more remote routers. In this case, upstream
routers can only cache content chunks if they are aware that
downstream routers that are closer to the content client have
no cache space available. This is achieved based on the
signalling communication between routers along each content
delivery path. We also introduce the policy that allows the
content client to pose a caching radius around itself. Such a
radius indicates the maximum allowable distance between the
farthest router that can participate in content caching for this
requester. A small radius means that fewer routers can
participate in content caching for the requester. The second
novelty of our approach is to employ multiple paths in plain IP
based networks to deliver content chunks to content clients.
As far as multi-path routing is concerned in CCN, the authors
in [1] lay the responsibility of determining multiple paths on
the node that generates the initial requests. Requests are then
forwarded simultaneously on these multiple paths and content
chunks are subsequently directed on these paths, by routers
that have requests entries made in their Pending Interest Table
(PIT). These multiple paths have no common paths between
them. In contrast to [1], in our design multiple paths are
identified between requesting node by application of Loop-
Free Alternate (LFA) technique which has already been
standardized in IP routing. In addition, we do not propose to
direct content chunks simultaneously on multiple paths as is
the case in [1]. The proposed multi-path content directing and
caching algorithm creates clusters of content around routers
that generated the initial request. Clusters are formed by
restricting caching and applying LFA only within a pre-
configured distance from destination router. Our focus is on
understanding the effectiveness of caching chunks of content
in clusters around each requesting node.



The technical contribution of this paper is summarised as
follows. First of all, the proposed algorithm creates efficient
content clusters around destination routers (clients) for local
content access. We propose a novel in-network content
caching algorithm that leverages on Loop-free alternate (LFA)
protocol to identify multiple paths on which contents are
delivered and cached.

The efficiency of the proposed algorithm is evaluated based on
the European GEANT network topology in a realistic
simulation environment. The results have indicated the benefit
of using multiple paths instead of single paths for delivering
and caching content chunks and avoid the negative effects of
sending identical contents on multiple paths as is the case in
[1].

Rest of the paper is organized as follows. Section II
describes the system design and the algorithm which is
explained with an example. Section III description of the
simulation environment and the results are presented. Section
IV describes the conclusions that we arrive at based on results
of the experiments.

II SYSTEM DESIGN

The main objective of caching content along multiple paths
between source and requesting client is to enable content
availability in clusters closer to interested users. The reasoning
for multiple paths against single path is to allow more content
routers near the client to get involved in content caching. In
general, identifying multiple paths must not entail any
additional communication overhead between routers.

A. Identifying multiple paths based on LFA

First of all, it should be noted that the responsibility of
identifying multiple paths lies with routers en-route from
destination to server on which request is directed. These en-
route caches are called intermediate routers. Computation of
alternate paths to other routers is performed by each
intermediate router independently in an offline manner. These
computations utilize the Loop Free Alternate (LFA) path
concept [2] which is originally for IP fast reroute purpose.
Specifically, LFAs are computed by routers to ensure
uninterrupted flow of network traffic in case any link failure
between two nodes. Router computes dedicated LFA next-hop
neighbours towards different destinations. The standard LFA
is based on inequality condition below [2] in the context of
Fig. 1.

dist(o, u) + dist(u, d) > dist(o, d)

More specifically, consider the head node u in the figure
which is responsible for computing alternate LFA paths
towards the destination d. The default shortest path from u to d
is via link 1 and the end-to-end distance between the node pair
is dist(u, d). Node o (the neighbouring node of u) enables a
feasible alternative LFA path if the distance from o to u plus
the distance from u to d is larger than the distance from o to d.
In this case, if the head node u “deflects” any packet towards d
onto neighbour o which is not on the default shortest path,

node o is still able to natively forward the packet to d along its
own shortest path but without returning the packet back to u.
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Fig 1.Loop Free Alternate Path

Forwarding content chunks along alternate paths is referred to
as deflecting in this piece of work. Application of LFA to
multi-paths caching is based on utilizing these LFAs to
identify multiple paths between intermediate nodes and the
content clients as final destination on the request path. Content
chunks are forwarded along these paths so routers that are
sufficiently close to the client can cache chunks flowing
towards destination. The design permits LFAs to be used
starting from routers closest to the destination routers, this is
to ensure caches closer to destination form content clusters. It
is noted that once a content chunk has been deflected, it
cannot be deflected again in order to avoid forwarding loops.
Another rule enforced is to prevent routers that are further
than pre-determined limit of hops from the destination router
(i.e. out-of-radius routers) from directing along LFAs.

B. Proposed Algorithm

During the operation, content requests are sent by each client
router towards the targeted content source. Each request
contains a hop counter, i.e. indicating the hop counts that
request has travelled. Initially, client node that generates the
request i.e. destination router sets the hop counter to 0 and
thereafter it increases by 1 after traversing each hop towards
the content source. This updated information is stored at each
router that has received the content request. Such information
is used by the intermediate routers to determine whether they
are located within or outside the radius from the client.

The proposed algorithm is executed at each intermediate
router with local caching capability, when a piece of incoming
content chunk is received. The algorithm has two main
components, decisions on caching content chunks and
forwarding chunks along alternate paths to enable caching
chunks on en-route intermediate routers. Only the routers
along the default shortest paths are permitted to deflect content
chunks along alternate LFA paths towards destination routers.
Content requests are generated for individual content chunks
R(C) and sent towards the source/s. As individual requests are
received at routers, an entry is created in the request table
(RT). Entries in the request table are used to identify content
chunks that need to be deflected on alternate LFA paths. The
algorithm has two procedures Store-and-Forward and Send-
on-LFApy (see the pseudo code on the right). The Store-and-
Forward procedure of the algorithm is the main function,



where the algorithm execution begins. It is initialized by
checking the content chunk C received on the interface ICy
has been requested by comparing entry for C in request table
RT, which is done in Step 1. Next, the algorithm compares the
distance of the current node to the destination router (DR) in
Step 2. If the current node is outside the radius, it can be
forwarded on shortest path to destination, as shown in Step 12.
This is to ensure only routers that are close to destination
router can apply LFA and cache. In order to ensure routers
close to the destination cache first or only cache it if the
downstream router has sent a cache full message, these
comparisons are performed in Step 3. The decision to cache is
based on the unavailability of LFAs, Step 4 and 5. Step 4 calls
the procedure Send-on-LFApg that checks for availability in
Step 1 of the procedure. Every available LFA path is checked
for any received cache full message in Step 3. If no cache full
message has been received, the content C does not need to be
cached and it is forwarded on the LFA and the algorithm
execution is stopped at Step 7 of procedure Send-on-LFApg.
If there are no LFA paths available or a cache full message is
received on each LFA, a true value is returned in Step 10. The
Store-and-Forward procedure next checks the returned value
in Step 5, if it is true and not previously cached based on
valued of pCache. The Step 16 of the procedure is executed if
the router is not on the request path. It checks to see if the next
hop is the destination or a cache full message has been
received. The content is cached if the conditions in Step 16 are
fulfilled; else they are forwarded on shortest path to
destination. If the content is cached at any router, it is marked
as cached and forwarded downstream towards destination.

The algorithm finally checks the condition of the cache in Step
23, if it is full to capacity it sends a cache full message
upstream on the interface the chunk was received. The cache
full message also contains the distance of the router from the
destination client. This makes sure a router which is not on the
default shortest path to determine whether it is within or
outside the specified caching radius from the client.

Multiple Path Content Chunk Caching Algorithm

C: index of chunk of Content C

CR: Curent Router

DR: Destination router

LFApg: Alternate Path to D from Current Node.

RT: Request Table

R(C): Request for Content chunk C.

d(DR): Distance from current router to destination router.

P: Path

IDg: Interface i on shortest path to DR from CR.

CFp: Cache Full message on path P.

CF: Cache Full message indicating distance to DR from CR.
Sizecg: Size of Cache at current router.

Capacitycg: Capacity of Cache at current router.

ICg: Receiving Interface for content C.

pCache: Boolean variable indicating content chunk has
already been previously cached at an upstream router.

pDeflected: Boolean variable indicating content has been
deflected i.e. sent on LFA.

Procedure Store-and-Forward
1: if R(C) € RT then

2:  if d(DR) <=Radius then

3: if CFp # null or d(DR)== 1 then

4. cache = procedure Send-on-LFADR

S: if cache = = true and pCache = = false then
6: Store C in cache

7: pCache = true

8: endif

9: forward on shortest path P

10: endif

11: else

12: forward on shortest path P

13:  endif

14:endif

15: else

16: if d(DR)==1 or CFp, # null and pCache = = false then
17: Store C in Cache

18: pCache = true

19:  endif

20: forward on P

21: if Sizecg = = Capacitycr then
22:  Send CF message on ICy
23: endif

Procedure Send-on-LFApgr
1: cache = true
2: if pDeflected = = false then

3: for every PE LFADR

4: if CFp == null then
5: cache = false

6: pDeflected=true

7: forward on P

8: stop algorithm

9: endif

10: endfor

11: endif

12: return cache

Now we further explain the mechanism of the cache full
message used in the protocol. The Cache full message is a
unique approach to communication among intermediate
routers along default and LFA paths. They indicate that
downstream router cannot store more contents in their cache.
A cache reaches a cache full state, if all the contents in its
cache have been requested within a specified time period. The
time period is also preconfigure by the ISP. The replacement
policy applied is LRU. In comparison to traditional application
of LRU, we only remove if the least recently used item has not
been used within the last few time units. The design assumes
routers store distance information once they have received a
cache full message with the distance to a destination.
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Fig 2. Explaining multi-path chunk caching scheme

C. An example

In this section, we will give a demonstration of the algorithm
described above by using a simple example. The example
demonstrates the delivery of content chunks from server S to
the content client U. In this case the destination router in Fig.2
is router R6 where U is attached. Initial requests for content
are received at R6. For simplicity we make an assumption that
all intermediate routers have one chunk capacity for caching.
In each step, routers marked in black are responsible for
deflecting content chunks onto alternate LFA paths. Cache
capacity of routers marked grey is full and cannot cache any
more contents. Thus they send out cache full messages to
routers upstream. Although it is not shown in the example, the
content requests are sent from R6 towards S on the shortest
path i.e. R6-R4-R3-R1 according to the IGP link weight
shown in the topology (next to each link). R6 sets the hop
counter to 0, as it reaches R4 it is increased to 1 and this value
is added to the requests and forwarded towards R3. These hop
counter values are thus stored at intermediate routers and
forwarded along with the requests. As, can be seen, in Fig. 2a
router R4 is marked black and thus instead of caching the
chunks, it first deflects them along the LFA to R6 i.e. R4-R5-
R7-R6. RS then forwards the chunks along its own shortest
IGP path to R6. As the scheme design is to allow closest
routers to start caching, R4 should have cached, but as there is
LFA to R6, it directs it on that path. Thus, R7 is the first router
to cache first chunk cl. Due to the assumption that cache
capacity is one, cache space at R7 is full and it sends a cache

full message back to its previous hope R5. Next, when R4
forwards the 2™ chunk c2 to R5 along the LFA path, as the
chunk is not marked as cached, R5 caches it as it knows that
downstream R7 can no longer cache it. Subsequently, RS
sends a cache full message to previous hop R4. The next
chunk c3 is then cached at R4, before being forwarded to R6
on the direct link. After caching R4 has no more space left to
cache any more content and hence it sends a cache full
message to its previous hop R3 as indicated in Fig. 2c. In Fig.
2d, R3 deflects future content chunks flowing through it i.e
chunk c4 on LFA toward destination R6 via its neighbour R2
and further to R4 which is on the shortest path to R6. But as
R4 cache is full, it does not cache ¢4 and thus the chunk
arrives at the last-hop node R6 which has to cache it, as can be
seen in Fig. 2e. Once router R3 has received cache full
message from R2, with the hop count included, the next chunk
c6 is cached at R3. As R3 is full it sends cache full message
upstream towards R1 as can be seen from Fig. 2f. Thus, to
emphasize a cache full message is only sent on interface on
which content chunk that was cached has been received. In
this example it is assumed that the request is completed by the
server. The similar actions would apply if the requests would
be completed by any en-route cache.

III. SIMULATION RESULTS

Table 1 represents the parameters that are applied in our
simulation experiments. We simulate over the GEANT
topology. The total number of available content items is 10°,
with each chunk 10 KB. The cache size at each router is 1GB.



Request generation uses Mandelbrot-Zipf model with
a,q={2.0,50}. Previous research has also focused on applying
this model for request generation [3][4]. These values are used
as we focus of video content like Youtube, VoD etc. which
exhibits request pattern with a=2.0[7]. The experiments were
conducted based on the following number of content servers
{1, 5, 10, 15} randomly placed within the network. Content
requests are randomly generated from all nodes in the
topology. As such, different numbers of alternative LFA paths
may exist for specific locations of content server-client pairs.
The cache replacement policy used is Least Recently
Used(LRU). The statistics are collected for contents that form
90% tile of request, so that the behavior of algorithm for very
popular contents is the main focus. The simulations results are
averaged over 5 independent runs each. The results are
presented with a 5% error value. Table 2 shows the different
test cases we have implemented and tested. In order to test the
performance of the application of LFA, we test caching on all
en-route routers, applying LFA within the radius = 1. We
differentiate the cache and LFA radius to enable highlighting
this case.

Table 1.Experiment Parameters

Parameter Values

Network topology GEANT (23 nodes and 74
links)

Total number of content | 10°

items

Size of each content 100 chunks

Size of each chunk 10 KB

Cache Size 1 GB

o,q {2.0,50}

Number of content servers | {1, 5, 10, 15}

Caching radius considered | {1, 2, 3}

Our algorithm aims at creating clustered content chunk caches
nearby by allowing caches within a given radius to store
contents. Naturally, it is necessary to compare against the
approaches that allow caching everywhere along the route.
Another important aspect is towards understanding the benefit
of applying Loop-free Alternate (LFA) to create content
clusters. Additionally, we study the effect of “breadth” of
content clusters and thus tests results for different radius
parameters.

Table 2.Test Cases
Server number Cache Radius LFA Radius

1 1,2,3 1,2,3

5 1 1

10 1 1

15 1 1

1 No No

1 No 1

A. Performance Metrics

Cache Hit Ratio: The cache hit ratio is defined as ratio of
total number of content chunk requests that can be served
from the en-route caches rather than from the original server
over the total number of content requests received. It measures

the utility of caching policy applied aggregated over the entire
topology.

Path Length Ratio: It is calculated as the ratio of the hop
count from the cache hit router back to the receiver and the
end-to-end hop count from the original server to that receiver.
Path Length Ratio can be directly used for evaluating the
localisation efficiency of content caching scheme.

Cache Efficiency: This metric is defined as the percentage of
the content chunks that have been requested since they have
been cached locally in a router against the total number of
chunks in the cache. With this metric we want to show the
fairness of the applying caching policy across the entire
topology.

B. Performance
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Fig 3. Performance comparison based on distance to complete requests

LFA deflection is applied only by routers that are located
within the pre-determined radius value from the destination.
This in combination with caching within the radius ensures
creating content clusters around each receiver. Also, as a
content chunk has once been deflected, further downstream
routers along the path does not deflect it again. The results in
Fig.4 indicate behaviour of the algorithm in terms of finding
content in cache is the best for the radius=1 scenario, with the
value at 22.5% of distance to the source, at which we can find
content chunk in caches to complete the request. This value
increases to 32.5% and 45% at radius values 2 and 3
respectively. The results are intuitive, as with higher radius
values, the chunks may travel over longer distance towards the
destination. When the number of servers is increased, it may
be expected to find content closer, but as larger number of
routers cache content chunks en-route, the caches store
significantly more content items that are not accessed after
they are cached, they are replaced more frequently and thus
the probability of finding the content in caches is lower. Thus
increases the distance at which content can be found in cache.
The benefit of LFA can be seen from comparing the result
against all caches en-route store contents with or without LFA.
Applying LFA reduces the distance to 20%, while without
LFA the distance value increases to 25%. The results can be
verified from Fig. 5 that shows higher cache hit at 65%
compared to 53% for all en-route caches storing content but



without applying LFA. Fig. 3 presents the comparison of the
performance of the algorithm against the different cases stated
above for the GEANT topology. Caching in clusters around
the destination the algorithm achieves 20% higher
performance compared to caching at all routers en-route when
LFA is used but experiences a significant drop in cache hit
ratio (being the worst performer by 20%) when LFA is not
applied. Cache hit ratio performance achieved at radius=2 and
3 is poorer compared to radius=1 by 20% and 33%, and this
can also be verified from Fig. 4. Thus, percentage of copies
available inside a network reduces at higher radius due to
evictions. Future requests have to be completed by servers or
routers located further from destination router. The number of
content copies being stored is higher as at radius=3, number
hops used are higher compared to not applying LFA. The
results for placing multiple servers inside the network when
our algorithm is applied are not as promising as in a single
server case at radius 1. Larger number of servers increases the
percentage of contents that are available at shorter distances.
This increases the percentage of contents that would be stored
in caches, thus increasing the probability of increase in the
number of replacements.
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Fig 4.Performance comparison based on Cache Hit Ratios

Caching efficiency plotted in Fig. 5 proves that the algorithm
works better at lower radius values. As explained in the
section on metrics, efficiency is computed based utility of the
cached content chunk locally to the router. The higher the
value the better is the performance of the algorithm. In case of
a single server the performance is on average 50% higher for
radius=1 compared to that of radius=2, 3. The results show the
viability of applying LFAs for use in in-network caching at
lower radius values. Instead of focusing a single path or
multiple parallel paths(that lead to identical content being
stored on entire length of those paths, resulting in higher
proportion of cache removals and thus achieve significantly
lower cache hit ratios[1]), algorithm provides a controlled
approach to pushing content on multiple paths.

IV. CONCLUSION
In this paper we proposed an algorithm to design a multiple
path content caching strategy which is a novel approach of
applying Loop free Alternate (LFA) to identify multiple paths.
The multi-path strategy is leveraged to create cluster of

content around routers that cache content en-route. Clusters
are created by enforcing a pre-determined radius that can be
configured by an ISP. En-route router/caches within the radius
can store content chunks in caches and deflect those on LFAs.
The scheme was evaluated for single and multi-server
scenarios through simulations on top of the GEANT network
topology. Performance achieved demonstrated the advantage
of using multiple paths, when using them in a limited radius
i.e. distance from the destination. At larger radius values,
multiple caches suffer from significant overlap of contents,
thus limiting the advantage due to higher percentage of
contents that are not accessed after being store in local caches.
With the application of intelligent routing, it is possible to
achieve load balancing and traffic optimizations among caches
and complete future requests at shorter distances.
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