
A Multi-Path based In-network Content Caching Scheme

Deepak Bhatia Ning Wang Michael Howarth

University of Surrey University of Surrey University of Surrey

Guildford, UK Guildford, UK Guildford, UK

d.bhatia@surrey.ac.uk n.wang@surrey.ac.uk m.howarth@surrey.ac.uk

Abstract � In this paper we propose an efficient scheme for

supporting multi-path based in-network content caching

by leveraging Loop-Free Alternate (LFA) in IP routing.

The purpose is to enable clustered distribution of cached

content chunks at en-route routers between the content

source and the requester. In order to achieve caching

localization, we also introduce policies that limit the

maximum allowable distance between caching routers and

the final destination, which is known as caching radius.

The benefit of the scheme is to distribute contents locally

around interested receivers in a balanced manner. We

evaluated the proposed algorithm through simulations

based on the GEANT network topology. The performance

exhibited by the multi-path based caching scheme

outperforms conventional approaches based on single path

routing.

I. INTRODUCTION

The consumption of dramatically increasing volumes of

content objects in the Internet has stimulated research efforts

into the re-design of the underlying network architecture

which is expected to be content-oriented. In this case, the

primary effect of content consumption has put content at the

center of future design of the Internet. The rapid growth of

available content in the Internet has resulted in the birth of

several content delivery mechanisms, such as CDNs, P2P and

more recently ICNs (information centric networks). Compared

to the traditional application-layer paradigms, ICNs are

deemed to be more revolutionary that put content level

knowledge and intelligence at the network layer. A typical

example is that en-route routers have the capability to

store/cache content objects as they are being delivered. Most

well-known ICN architectures include CCN/NDN [7], DONA

[8] and PSIRP/PURSUIT in the literature.

In-network content caching has been a hot research topic in

the context of ICN research. The idea is to cache popular

content items within the network between the content server

and receivers. The WAVE scheme [3] focused on efficiently

populating network caches chunk-by-chunk of content to

improve content service performance. WAVE adopts a

window-based algorithm that is executed locally at each router

along the path between the content server and the client. At

each step, based on the popularity the number of chunks

(window) to be cached is increased. Its execution starts close

on directing content flows symmetrically. The authors of [4]

proposed to use age of content measured by the distance from

the source of content, as a metric to achieve caching closer to

destinations. It uses age of content to decide whether content

can be cached and replaced. Content age is longer if its

distance from the server is higher. The longer age also

indicates higher popularity of content. Thus more popular

content can thus be stored closer to the destination router or

the edge of the network.
In this paper, we introduce a new in-network caching

scheme that allows content chunks to be cached in a clustered
manner along multiple paths towards interested receivers. The
motivation is to enable more routers nearby to have the
opportunity of being involved in caching content locally. We
achieve this by ensuring that the caching operation is initiated
by the neighbouring nodes of the receiver and then it further
expanded to more remote routers. In this case, upstream
routers can only cache content chunks if they are aware that
downstream routers that are closer to the content client have
no cache space available. This is achieved based on the
signalling communication between routers along each content
delivery path. We also introduce the policy that allows the
content client to pose a caching radius around itself. Such a
radius indicates the maximum allowable distance between the
farthest router that can participate in content caching for this
requester. A small radius means that fewer routers can
participate in content caching for the requester. The second
novelty of our approach is to employ multiple paths in plain IP
based networks to deliver content chunks to content clients.
As far as multi-path routing is concerned in CCN, the authors
in [1] lay the responsibility of determining multiple paths on
the node that generates the initial requests. Requests are then
forwarded simultaneously on these multiple paths and content
chunks are subsequently directed on these paths, by routers
that have requests entries made in their Pending Interest Table
(PIT). These multiple paths have no common paths between
them. In contrast to [1], in our design multiple paths are
identified between requesting node by application of Loop-
Free Alternate (LFA) technique which has already been
standardized in IP routing. In addition, we do not propose to
direct content chunks simultaneously on multiple paths as is
the case in [1]. The proposed multi-path content directing and
caching algorithm creates clusters of content around routers
that generated the initial request. Clusters are formed by
restricting caching and applying LFA only within a pre-
configured distance from destination router. Our focus is on
understanding the effectiveness of caching chunks of content
in clusters around each requesting node.

The technical contribution of this paper is summarised as

follows. First of all, the proposed algorithm creates efficient

content clusters around destination routers (clients) for local

content access. We propose a novel in-network content

caching algorithm that leverages on Loop-free alternate (LFA)

protocol to identify multiple paths on which contents are

delivered and cached.

The efficiency of the proposed algorithm is evaluated based on

the European GEANT network topology in a realistic

simulation environment. The results have indicated the benefit

of using multiple paths instead of single paths for delivering

and caching content chunks and avoid the negative effects of

sending identical contents on multiple paths as is the case in

[1].
Rest of the paper is organized as follows. Section II

describes the system design and the algorithm which is
explained with an example. Section III description of the
simulation environment and the results are presented. Section
IV describes the conclusions that we arrive at based on results
of the experiments.

II SYSTEM DESIGN

The main objective of caching content along multiple paths

between source and requesting client is to enable content

availability in clusters closer to interested users. The reasoning

for multiple paths against single path is to allow more content

routers near the client to get involved in content caching. In

general, identifying multiple paths must not entail any

additional communication overhead between routers.

 A. Identifying multiple paths based on LFA

First of all, it should be noted that the responsibility of

identifying multiple paths lies with routers en-route from

destination to server on which request is directed. These en-

route caches are called intermediate routers. Computation of

alternate paths to other routers is performed by each

intermediate router independently in an offline manner. These

computations utilize the Loop Free Alternate (LFA) path

concept [2] which is originally for IP fast reroute purpose.

Specifically, LFAs are computed by routers to ensure

uninterrupted flow of network traffic in case any link failure

between two nodes. Router computes dedicated LFA next-hop

neighbours towards different destinations. The standard LFA

is based on inequality condition below [2] in the context of

Fig. 1.

dist(o, u) + dist(u, d) > dist(o, d)

More specifically, consider the head node u in the figure

which is responsible for computing alternate LFA paths

towards the destination d. The default shortest path from u to d

is via link l and the end-to-end distance between the node pair

is dist(u, d). Node o (the neighbouring node of u) enables a

feasible alternative LFA path if the distance from o to u plus

the distance from u to d is larger than the distance from o to d.

�✁ ✂✄☎✆ ✝✞✆✟✠ ☎✡ ✂✄✟ ✄✟✞☛ ✁☞☛✟ ✌ ✍☛✟✡✎✟✝✂✆✏ ✞✁✑ ✒✞✝✓✟✂ ✂☞✔✞✕☛✆ d

onto neighbour o which is not on the default shortest path,

node o is still able to natively forward the packet to d along its

own shortest path but without returning the packet back to u.

u

o

d

vl

dist(u, d)

dist(o, u)

dist(o, d)

Head

node

LFA

next-hop

to destination d

Destination

Primary

next-hop

to destination d

Fig 1.Loop Free Alternate Path

Forwarding content chunks along alternate paths is referred to

as deflecting in this piece of work. Application of LFA to

multi-paths caching is based on utilizing these LFAs to

identify multiple paths between intermediate nodes and the

content clients as final destination on the request path. Content

chunks are forwarded along these paths so routers that are

sufficiently close to the client can cache chunks flowing

towards destination. The design permits LFAs to be used

starting from routers closest to the destination routers, this is

to ensure caches closer to destination form content clusters. It

is noted that once a content chunk has been deflected, it

cannot be deflected again in order to avoid forwarding loops.

Another rule enforced is to prevent routers that are further

than pre-determined limit of hops from the destination router

(i.e. out-of-radius routers) from directing along LFAs.

B. Proposed Algorithm

During the operation, content requests are sent by each client

router towards the targeted content source. Each request

contains a hop counter, i.e. indicating the hop counts that

request has travelled. Initially, client node that generates the

request i.e. destination router sets the hop counter to 0 and

thereafter it increases by 1 after traversing each hop towards

the content source. This updated information is stored at each

router that has received the content request. Such information

is used by the intermediate routers to determine whether they

are located within or outside the radius from the client.

The proposed algorithm is executed at each intermediate

router with local caching capability, when a piece of incoming

content chunk is received. The algorithm has two main

components, decisions on caching content chunks and

forwarding chunks along alternate paths to enable caching

chunks on en-route intermediate routers. Only the routers

along the default shortest paths are permitted to deflect content

chunks along alternate LFA paths towards destination routers.

Content requests are generated for individual content chunks

R(C) and sent towards the source/s. As individual requests are

received at routers, an entry is created in the request table

(RT). Entries in the request table are used to identify content

chunks that need to be deflected on alternate LFA paths. The

algorithm has two procedures Store-and-Forward and Send-

on-LFADR (see the pseudo code on the right). The Store-and-

Forward procedure of the algorithm is the main function,

where the algorithm execution begins. It is initialized by

checking the content chunk C received on the interface ICR

has been requested by comparing entry for C in request table

RT, which is done in Step 1. Next, the algorithm compares the

distance of the current node to the destination router (DR) in

Step 2. If the current node is outside the radius, it can be

forwarded on shortest path to destination, as shown in Step 12.

This is to ensure only routers that are close to destination

router can apply LFA and cache. In order to ensure routers

close to the destination cache first or only cache it if the

downstream router has sent a cache full message, these

comparisons are performed in Step 3. The decision to cache is

based on the unavailability of LFAs, Step 4 and 5. Step 4 calls

the procedure Send-on-LFADR that checks for availability in

Step 1 of the procedure. Every available LFA path is checked

for any received cache full message in Step 3. If no cache full

message has been received, the content C does not need to be

cached and it is forwarded on the LFA and the algorithm

execution is stopped at Step 7 of procedure Send-on-LFADR.

If there are no LFA paths available or a cache full message is

received on each LFA, a true value is returned in Step 10. The

Store-and-Forward procedure next checks the returned value

in Step 5, if it is true and not previously cached based on

valued of pCache. The Step 16 of the procedure is executed if

the router is not on the request path. It checks to see if the next

hop is the destination or a cache full message has been

received. The content is cached if the conditions in Step 16 are

fulfilled; else they are forwarded on shortest path to

destination. If the content is cached at any router, it is marked

as cached and forwarded downstream towards destination.

The algorithm finally checks the condition of the cache in Step

23, if it is full to capacity it sends a cache full message

upstream on the interface the chunk was received. The cache

full message also contains the distance of the router from the

destination client. This makes sure a router which is not on the

default shortest path to determine whether it is within or

outside the specified caching radius from the client.

Multiple Path Content Chunk Caching Algorithm

C: index of chunk of Content C

CR: Curent Router

DR: Destination router

LFADR: Alternate Path to D from Current Node.

RT: Request Table

R(C): Request for Content chunk C.

d(DR): Distance from current router to destination router.

P: Path

IDR: Interface i on shortest path to DR from CR.

CFP: Cache Full message on path P.

CF: Cache Full message indicating distance to DR from CR.

SizeCR: Size of Cache at current router.

CapacityCR: Capacity of Cache at current router.

ICR: Receiving Interface for content C.

pCache: Boolean variable indicating content chunk has

already been previously cached at an upstream router.

pDeflected: Boolean variable indicating content has been

deflected i.e. sent on LFA.

__

Procedure Store-and-Forward

1: if R(C) ✆ RT then

2: if d(DR) <=Radius then

3: if CFP ✂ null or d(DR)= = 1 then

4: cache = procedure Send-on-LFADR

5: if cache = = true and pCache = = false then

6: Store C in cache

7: pCache = true

8: endif

9: forward on shortest path P

10: endif

11: else

12: forward on shortest path P

13: endif

14:endif

15: else

16: if d(DR)= = 1 or CFP ✂ null and pCache = = false then

17: Store C in Cache

18: pCache = true

19: endif

20: forward on P

21: if SizeCR = = CapacityCR then

22: Send CF message on ICR

23: endif

Procedure Send-on-LFADR

1: cache = true

2: if pDeflected = = false then

3: for every P✆ LFADR

4: if CFP = = null then

5: cache = false

6: pDeflected=true

7: forward on P

8: stop algorithm

9: endif

10: endfor

11: endif

12: return cache

Now we further explain the mechanism of the cache full

message used in the protocol. The Cache full message is a

unique approach to communication among intermediate

routers along default and LFA paths. They indicate that

downstream router cannot store more contents in their cache.

A cache reaches a cache full state, if all the contents in its

cache have been requested within a specified time period. The

time period is also preconfigure by the ISP. The replacement

policy applied is LRU. In comparison to traditional application

of LRU, we only remove if the least recently used item has not

been used within the last few time units. The design assumes

routers store distance information once they have received a

cache full message with the distance to a destination.

