113 research outputs found

    Conformal Scalar Propagation on the Schwarzschild Black-Hole Geometry

    Full text link
    The vacuum activity generated by the curvature of the Schwarzschild black-hole geometry close to the event horizon is studied for the case of a massless, conformal scalar field. The associated approximation to the unknown, exact propagator in the Hartle-Hawking vacuum state for small values of the radial coordinate above r=2M r = 2M results in an analytic expression which manifestly features its dependence on the background space-time geometry. This approximation to the Hartle-Hawking scalar propagator on the Schwarzschild black-hole geometry is, for that matter, distinct from all other. It is shown that the stated approximation is valid for physical distances which range from the event horizon to values which are orders of magnitude above the scale within which quantum and backreaction effects are comparatively pronounced. An expression is obtained for the renormalised in the Hartle-Hawking vacuum state which reproduces the established results on the event horizon and in that segment of the exterior geometry within which the approximation is valid. In contrast to previous results the stated expression has the superior feature of being entirely analytic. The effect of the manifold's causal structure to scalar propagation is also studied.Comment: 34 pages, 2 figures. Published on line on October 16, 2009 and due to appear in print in Gen.Rel.Gra

    Vacuum polarization in two-dimensional static spacetimes and dimensional reduction

    Get PDF
    We obtain an analytic approximation for the effective action of a quantum scalar field in a general static two-dimensional spacetime. We apply this to the dilaton gravity model resulting from the spherical reduction of a massive, non-minimally coupled scalar field in the four-dimensional Schwarzschild geometry. Careful analysis near the event horizon shows the resulting two-dimensional system to be regular in the Hartle-Hawking state for general values of the field mass, coupling, and angular momentum, while at spatial infinity it reduces to a thermal gas at the black-hole temperature.Comment: REVTeX 4, 23 pages. Accepted by PRD. Minor modifications from original versio

    Fluctuations of an evaporating black hole from back reaction of its Hawking radiation: Questioning a premise in earlier work

    Full text link
    This paper delineates the first steps in a systematic quantitative study of the spacetime fluctuations induced by quantum fields in an evaporating black hole. We explain how the stochastic gravity formalism can be a useful tool for that purpose within a low-energy effective field theory approach to quantum gravity. As an explicit example we apply it to the study of the spherically-symmetric sector of metric perturbations around an evaporating black hole background geometry. For macroscopic black holes we find that those fluctuations grow and eventually become important when considering sufficiently long periods of time (of the order of the evaporation time), but well before the Planckian regime is reached. In addition, the assumption of a simple correlation between the fluctuations of the energy flux crossing the horizon and far from it, which was made in earlier work on spherically-symmetric induced fluctuations, is carefully analyzed and found to be invalid. Our analysis suggests the existence of an infinite amplitude for the fluctuations of the horizon as a three-dimensional hypersurface. We emphasize the need for understanding and designing operational ways of probing quantum metric fluctuations near the horizon and extracting physically meaningful information.Comment: 10 pages, REVTeX; minor changes, a few references added and a brief discussion of their relevance included. To appear in the proceedings of the 10th Peyresq meeting. Dedicated to Rafael Sorkin on the occasion of his 60th birthda

    Analytical approximation of the stress-energy tensor of a quantized scalar field in static spherically symmetric spacetimes

    Get PDF
    Analytical approximations for {} and {} of a quantized scalar field in static spherically symmetric spacetimes are obtained. The field is assumed to be both massive and massless, with an arbitrary coupling ξ\xi to the scalar curvature, and in a zero temperature vacuum state. The expressions for {} and {} are divided into low- and high-frequency parts. The contributions of the high-frequency modes to these quantities are calculated for an arbitrary quantum state. As an example, the low-frequency contributions to {} and {} are calculated in asymptotically flat spacetimes in a quantum state corresponding to the Minkowski vacuum (Boulware quantum state). The limits of the applicability of these approximations are discussed.Comment: revtex4, 17 pages; v2: three references adde

    Some general properties of the renormalized stress-energy tensor for static quantum states on (n+1)-dimensional spherically symmetric black holes

    Get PDF
    We study the renormalized stress-energy tensor (RSET) for static quantum states on (n+1)-dimensional, static, spherically symmetric black holes. By solving the conservation equations, we are able to write the stress-energy tensor in terms of a single unknown function of the radial co-ordinate, plus two arbitrary constants. Conditions for the stress-energy tensor to be regular at event horizons (including the extremal and ``ultra-extremal'' cases) are then derived using generalized Kruskal-like co-ordinates. These results should be useful for future calculations of the RSET for static quantum states on spherically symmetric black hole geometries in any number of space-time dimensions.Comment: 9 pages, no figures, RevTeX4, references added, accepted for publication in General Relativity and Gravitatio

    Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime

    Get PDF
    A method for computing the stress-energy tensor for the quantized, massless, spin 1/2 field in a general static spherically symmetric spacetime is presented. The field can be in a zero temperature state or a non-zero temperature thermal state. An expression for the full renormalized stress-energy tensor is derived. It consists of a sum of two tensors both of which are conserved. One tensor is written in terms of the modes of the quantized field and has zero trace. In most cases it must be computed numerically. The other tensor does not explicitly depend on the modes and has a trace equal to the trace anomaly. It can be used as an analytic approximation for the stress-energy tensor and is equivalent to other approximations that have been made for the stress-energy tensor of the massless spin 1/2 field in static spherically symmetric spacetimes.Comment: 34 pages, no figure

    Collider and Dark Matter Searches in Models with Mixed Modulus-Anomaly Mediated SUSY Breaking

    Get PDF
    We investigate the phenomenology of supersymmetric models where moduli fields and the Weyl anomaly make comparable contributions to SUSY breaking effects in the observable sector of fields. This mixed modulus-anomaly mediated supersymmetry breaking (MM-AMSB) scenario is inspired by models of string compactification with fluxes, which have been shown to yield a de Sitter vacuum (as in the recent construction by Kachru {\it et al}). The phenomenology depends on the so-called modular weights which, in turn, depend on the location of various fields in the extra dimensions. We find that the model with zero modular weights gives mass spectra characterized by very light top squarks and/or tau sleptons, or where M_1\sim -M_2 so that the bino and wino are approximately degenerate. The top squark mass can be in the range required by successful electroweak baryogenesis. The measured relic density of cold dark matter can be obtained via top squark co-annihilation at low \tan\beta, tau slepton co-annihilation at large \tan\beta or via bino-wino coannihilation. Then, we typically find low rates for direct and indirect detection of neutralino dark matter. However, essentially all the WMAP-allowed parameter space can be probed by experiments at the CERN LHC, while significant portions may also be explored at an e^+e^- collider with \sqrt{s}=0.5--1 TeV. We also investigate a case with non-zero modular weights. In this case, co-annihilation, A-funnel annihilation and bulk annihilation of neutralinos are all allowed. Results for future colliders are qualitatively similar, but prospects for indirect dark matter searches via gamma rays and anti-particles are somewhat better.Comment: 38 pages including 22 EPS figures; latest version posted to conform with published versio

    Reach of the Fermilab Tevatron for minimal supergravity in the region of large scalar masses

    Full text link
    The reach of the Fermilab Tevatron for supersymmetric matter has been calculated in the framework of the minimal supergravity model in the clean trilepton channel. Previous analyses of this channel were restricted to scalar masses m_0<= 1 TeV. We extend the analysis to large values of scalar masses m_0\sim 3.5 TeV. This includes the compelling hyperbolic branch/focus point (HB/FP) region, where the superpotential \mu parameter becomes small. In this region, assuming a 5\sigma (3\sigma) signal with 10 (25) fb^{-1} of integrated luminosity, the Tevatron reach in the trilepton channel extends up to m_{1/2}\sim 190 (270) GeV independent of \tan\beta . This corresponds to a reach in terms of the gluino mass of m_{\tg}\sim 575 (750) GeV.Comment: 11 page latex file including 6 EPS figures; several typos corrected and references adde

    4pi Models of CMEs and ICMEs

    Full text link
    Coronal mass ejections (CMEs), which dynamically connect the solar surface to the far reaches of interplanetary space, represent a major anifestation of solar activity. They are not only of principal interest but also play a pivotal role in the context of space weather predictions. The steady improvement of both numerical methods and computational resources during recent years has allowed for the creation of increasingly realistic models of interplanetary CMEs (ICMEs), which can now be compared to high-quality observational data from various space-bound missions. This review discusses existing models of CMEs, characterizing them by scientific aim and scope, CME initiation method, and physical effects included, thereby stressing the importance of fully 3-D ('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication in Solar Physics (SUN-360 topical issue

    Life path analysis: scaling indicates priming effects of social and habitat factors on dispersal distances

    Get PDF
    1. Movements of many animals along a life-path can be separated into repetitive ones within home ranges and transitions between home ranges. We sought relationships of social and environmental factors with initiation and distance of transition movements in 114 buzzards Buteo buteo that were marked as nestlings with long-life radio tags. 2. Ex-natal dispersal movements of 51 buzzards in autumn were longer than for 30 later in their first year and than 35 extra-natal movements between home ranges after leaving nest areas. In the second and third springs, distances moved from winter focal points by birds that paired were the same or less than for unpaired birds. No post-nuptial movement exceeded 2 km. 3. Initiation of early ex-natal dispersal was enhanced by presence of many sibs, but also by lack of worm-rich loam soils. Distances travelled were greatest for birds from small broods and with relatively little short grass-feeding habitat near the nest. Later movements were generally enhanced by the absence of loam soils and short grassland, especially with abundance of other buzzards and probable poor feeding habitats (heathland, long grass). 4. Buzzards tended to persist in their first autumn where arable land was abundant, but subsequently showed a strong tendency to move from this habitat. 5. Factors that acted most strongly in ½-km buffers round nests, or round subsequent focal points, usually promoted movement compared with factors acting at a larger scale. Strong relationships between movement distances and environmental characteristics in ½-km buffers, especially during early ex-natal dispersal, suggested that buzzards became primed by these factors to travel far. 6. Movements were also farthest for buzzards that had already moved far from their natal nests, perhaps reflecting genetic predisposition, long-term priming or poor habitat beyond the study area
    corecore