39,025 research outputs found

    A control system formulation of the mechanism that controls the secretions of serum group hormone in humans during sleep

    Get PDF
    Plasma growth hormone concentrations during sleep were determined experimentally. An elevated level of plasma growth hormone was observed during the initial phase of sleep and remained elevated for approximately 3 hr before returning to the steady-state level. Moreover, subsequent to a prolonged interruption of sleep, of the order of 2-3 hr, an elevated level of plasma growth hormone was again observed during the initial phase of resumed sleep. A control system formulation of the mechanism that controls the secretions of serum growth hormone in humans was used to account for the growth hormone responses observed

    Non-equilibrium fluctuations and mechanochemical couplings of a molecular motor

    Full text link
    We investigate theoretically the violations of Einstein and Onsager relations, and the efficiency for a single processive motor operating far from equilibrium using an extension of the two-state model introduced by Kafri {\em et al.} [Biophys. J. {\bf 86}, 3373 (2004)]. With the aid of the Fluctuation Theorem, we analyze the general features of these violations and this efficiency and link them to mechanochemical couplings of motors. In particular, an analysis of the experimental data of kinesin using our framework leads to interesting predictions that may serve as a guide for future experiments.Comment: 4 pages, 4 figures, accepted to Phys. Rev. Let

    Biscayne aquifer in Dade and Broward Counties, Florida

    Get PDF
    The Biscayne Aquifer is the principal source of water for the heavily populated area in the vicinity of West Palm Beach and Miami. The publication of this data is timely and will assist in the intelligent development of the water resources of the area.(PDF has 64 pages

    Influence of friction forces on the motion of VTOL aircraft during landing operations on ships at sea

    Get PDF
    Equations describing the friction forces generated during landing operations on ships at sea were formulated. These forces depend on the platform reaction and the coefficient of friction. The platform reaction depends on the relative sink rate and the shock absorbing capability of the landing gear. The friction coefficient varies with the surface condition of the landing platform and the angle of yaw of the aircraft relative to the landing platform. Landings by VTOL aircraft, equipped with conventional oleopneumatic landing gears are discussed. Simplifications are introduced to reduce the complexity of the mathematical description of the tire and shock strut characteristics. Approximating the actual complicated force deflection characteristic of the tire by linear relationship is adequate. The internal friction forces in the shock strut are included in the landing gear model. A set of relatively simple equations was obtained by including only those tire and shock strut characteristics that contribute significantly to the generation of landing gear forces

    On the push&pull protocol for rumour spreading

    Full text link
    The asynchronous push&pull protocol, a randomized distributed algorithm for spreading a rumour in a graph GG, works as follows. Independent Poisson clocks of rate 1 are associated with the vertices of GG. Initially, one vertex of GG knows the rumour. Whenever the clock of a vertex xx rings, it calls a random neighbour yy: if xx knows the rumour and yy does not, then xx tells yy the rumour (a push operation), and if xx does not know the rumour and yy knows it, yy tells xx the rumour (a pull operation). The average spread time of GG is the expected time it takes for all vertices to know the rumour, and the guaranteed spread time of GG is the smallest time tt such that with probability at least 11/n1-1/n, after time tt all vertices know the rumour. The synchronous variant of this protocol, in which each clock rings precisely at times 1,2,1,2,\dots, has been studied extensively. We prove the following results for any nn-vertex graph: In either version, the average spread time is at most linear even if only the pull operation is used, and the guaranteed spread time is within a logarithmic factor of the average spread time, so it is O(nlogn)O(n\log n). In the asynchronous version, both the average and guaranteed spread times are Ω(logn)\Omega(\log n). We give examples of graphs illustrating that these bounds are best possible up to constant factors. We also prove theoretical relationships between the guaranteed spread times in the two versions. Firstly, in all graphs the guaranteed spread time in the asynchronous version is within an O(logn)O(\log n) factor of that in the synchronous version, and this is tight. Next, we find examples of graphs whose asynchronous spread times are logarithmic, but the synchronous versions are polynomially large. Finally, we show for any graph that the ratio of the synchronous spread time to the asynchronous spread time is O(n2/3)O(n^{2/3}).Comment: 25 page

    The MOSS camera on H-1NF

    Get PDF
    We have configured the modulated optical solid-state spectrometer, a recently developed high-resolution instrument for plasma Dopplerspectroscopy, as an imaging spectroscopiccamera. The camera features a wide field of view (∼10°), large aperture (40 mm), and high spectral resolution ν/Δν greater than 10 000. The camera installation on the H-1NF Heliac is described, together with the steps in the design process, including field widening. Calibration and characterization of the instrument function is discussed and the instrument performance is illustrated with some sample results of spatially resolved ion temperature measurements in H-1NF

    Nematic and Polar order in Active Filament Solutions

    Full text link
    Using a microscopic model of interacting polar biofilaments and motor proteins, we characterize the phase diagram of both homogeneous and inhomogeneous states in terms of experimental parameters. The polarity of motor clusters is key in determining the organization of the filaments in homogeneous isotropic, polarized and nematic states, while motor-induced bundling yields spatially inhomogeneous structures.Comment: 4 pages. 3 figure

    Ultraviolet spectroscopy of narrow coronal mass ejections

    Get PDF
    We present Ultraviolet Coronagraph Spectrometer (UVCS) observations of 5 narrow coronal mass ejections (CMEs) that were among 15 narrow CMEs originally selected by Gilbert et al. (2001). Two events (1999 March 27, April 15) were "structured", i.e. in white light data they exhibited well defined interior features, and three (1999 May 9, May 21, June 3) were "unstructured", i.e. appeared featureless. In UVCS data the events were seen as 4-13 deg wide enhancements of the strongest coronal lines HI Ly-alpha and OVI (1032,1037 A). We derived electron densities for several of the events from the Large Angle Spectrometric Coronagraph (LASCO) C2 white light observations. They are comparable to or smaller than densities inferred for other CMEs. We modeled the observable properties of examples of the structured (1999 April 15) and unstructured (1999 May 9) narrow CMEs at different heights in the corona between 1.5 and 2 R(Sun). The derived electron temperatures, densities and outflow speeds are similar for those two types of ejections. They were compared with properties of polar coronal jets and other CMEs. We discuss different scenarios of narrow CME formation either as a jet formed by reconnection onto open field lines or CME ejected by expansion of closed field structures. Overall, we conclude that the existing observations do not definitively place the narrow CMEs into the jet or the CME picture, but the acceleration of the 1999 April 15 event resembles acceleration seen in many CMEs, rather than constant speeds or deceleration observed in jets.Comment: AASTeX, 22 pages, incl. 3 figures (2 color) and 3 tables. Accepted for publication in Ap.

    EFFECTS OF RISK, DISEASE, AND NITROGEN SOURCE ON OPTIMAL NITROGEN FERTILIZATION RATES IN WINTER WHEAT PRODUCTION

    Get PDF
    Interactions among nitrogen (N) fertilization rate, N source, and disease severity can affect mean yield and yield variance in conservation tillage wheat production. A Just-Pope model was used to evaluate the effects of N rate, N source, and disease on the spring N-fertilization decision. Ammonium nitrate (AN) was the utility-maximizing N source regardless of risk preferences. The net-return-maximizing AN rate was 92 lb N/acre, providing 0.52/acrehighernetreturnsthanthebestalternativeNsource(urea).IfafarmercouldanticipateahigherthanaverageTakeAllinfection,thedifferenceinoptimalnetreturnsbetweenANandureawouldincreaseto0.52/acre higher net returns than the best alternative N source (urea). If a farmer could anticipate a higher than average Take-All infection, the difference in optimal net-returns between AN and urea would increase to 35.11/acre.Crop Production/Industries,
    corecore