27,790 research outputs found

    Preliminary design study - Oxidizer tank helium pressure regulator, Flox-Atlas, airborne Final report

    Get PDF
    Oxidizer tank helium pressure regulator compatible with fluorine-liquid oxyge

    Markov Process of Muscle Motors

    Full text link
    We study a Markov random process describing a muscle molecular motor behavior. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spend an exponential time depending on the state. The thin filament moves at its velocity proportional to average of all displacements of all motors. We assume that the time which a motor stays at the bound state does not depend on its displacement. Then one can find an exact solution of a non-linear equation appearing in the limit of infinite number of the motors.Comment: 10 page

    Heat transport measurements in turbulent rotating Rayleigh-Benard convection

    Full text link
    We present experimental heat transport measurements of turbulent Rayleigh-B\'{e}nard convection with rotation about a vertical axis. The fluid, water with Prandtl number (σ\sigma) about 6, was confined in a cell which had a square cross section of 7.3 cm×\times7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2×105<2\times 10^5 < Ra <5×108 < 5\times 10^8 and Taylor numbers 0<0 < Ta <5×109< 5\times 10^{9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate ΩD\Omega_D, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10710^7 to about 10910^9 is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form aRa1/5+bRa1/3a Ra^{1/5} + b Ra^{1/3}. The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.Comment: 16 pages, 12 figure

    Modeling radiation belt radial diffusion in ULF wave fields: 1. Quantifying ULF wave power at geosynchronous orbit in observations and in global MHD model

    Get PDF
    [1] To provide critical ULF wave field information for radial diffusion studies in the radiation belts, we quantify ULF wave power (f = 0.5–8.3 mHz) in GOES observations and magnetic field predictions from a global magnetospheric model. A statistical study of 9 years of GOES data reveals the wave local time distribution and power at geosynchronous orbit in field-aligned coordinates as functions of wave frequency, solar wind conditions (Vx, ΔPd and IMF Bz) and geomagnetic activity levels (Kp, Dst and AE). ULF wave power grows monotonically with increasing solar wind Vx, dynamic pressure variations ΔPd and geomagnetic indices in a highly correlated way. During intervals of northward and southward IMF Bz, wave activity concentrates on the dayside and nightside sectors, respectively, due to different wave generation mechanisms in primarily open and closed magnetospheric configurations. Since global magnetospheric models have recently been used to trace particles in radiation belt studies, it is important to quantify the wave predictions of these models at frequencies relevant to electron dynamics (mHz range). Using 27 days of real interplanetary conditions as model inputs, we examine the ULF wave predictions modeled by the Lyon-Fedder-Mobarry magnetohydrodynamic code. The LFM code does well at reproducing, in a statistical sense, the ULF waves observed by GOES. This suggests that the LFM code is capable of modeling variability in the magnetosphere on ULF time scales during typical conditions. The code provides a long-missing wave field model needed to quantify the interaction of radiation belt electrons with realistic, global ULF waves throughout the inner magnetosphere

    Design and fabrication of an autonomous rendezvous and docking sensor using off-the-shelf hardware

    Get PDF
    NASA Marshall Space Flight Center (MSFC) has developed and tested an engineering model of an automated rendezvous and docking sensor system composed of a video camera ringed with laser diodes at two wavelengths and a standard remote manipulator system target that has been modified with retro-reflective tape and 830 and 780 mm optical filters. TRW has provided additional engineering analysis, design, and manufacturing support, resulting in a robust, low cost, automated rendezvous and docking sensor design. We have addressed the issue of space qualification using off-the-shelf hardware components. We have also addressed the performance problems of increased signal to noise ratio, increased range, increased frame rate, graceful degradation through component redundancy, and improved range calibration. Next year, we will build a breadboard of this sensor. The phenomenology of the background scene of a target vehicle as viewed against earth and space backgrounds under various lighting conditions will be simulated using the TRW Dynamic Scene Generator Facility (DSGF). Solar illumination angles of the target vehicle and candidate docking target ranging from eclipse to full sun will be explored. The sensor will be transportable for testing at the MSFC Flight Robotics Laboratory (EB24) using the Dynamic Overhead Telerobotic Simulator (DOTS)
    • …
    corecore