1,150 research outputs found

    Optical characterization of LDEF contaminant film

    Get PDF
    Dark brown molecular film deposits were found at numerous locations on the Long Duration Exposure Facility (LDEF) and have been documented in great detail by several investigators. The exact deposition mechanism for these deposits is as yet unknown, although direct and scattered atomic oxygen, and solar radiation interacting with materials outgassing products have all been implicated in the formation process. Specimens of the brown molecular film were taken from below the flange of the experimental tray located at position D10 on the LDEF. The tray was one of two, comprising the same experiment, the other being located on the wake facing side of the LDEF satellite at position B4. Having access to both trays, we were able to directly compare the effect that orientation with respect to the atomic oxygen flux vector had on the formation of the brown molecular film deposits. The film is thickest on surfaces facing toward the exterior, i.e. the tray corner, as can be seen by comparing the lee and wake aspects of the rivets. The patterns appear to be aligned not with the velocity vector but with the corner of the tray suggesting that flux to the surface is due to scattered atomic oxygen rather than direct ram impingement. The role of scattered flux is further supported by more faint plume patterns on the sides of the tray. The angle of these plumes is strongly aligned with the ram direction but the outline of the deposit implies that incident atoms are scattered by collisions with the edges of the opening resulting in a directed, but diffuse, flux of atomic oxygen to the surface. Spectral reflectance measurements in the 2 to 10 micron (4000 to 1000 wavenumbers) spectral range are presented for the film in the 'as deposited' condition and for the free standing film. The material was analyzed by FTIR (Fourier Transform Infrared) microspectroscopy using gold as the reference standard. The 'as deposited' specimen was on an aluminum rivet taken from beneath the tray flange while the free film was obtained by chipping some of the material from the rivet. The transmission spectrum over the 2 to 10 micron range for the free film is presented. This spectrum appears to be essentially the same as that presented by Crutcher et.al. for films formed at vent sites which faced into the ram direction and suggested to originate from urethanes and silicones used on the LDEF. Banks et. al. state that silicones, when exposed to atomic oxygen, release polymeric scission fragments which deposit on surfaces and form a glassy, dark contaminant layer upon further atomic oxygen exposure and solar irradiation

    An evaluation of Bradfordizing effects

    Get PDF
    The purpose of this paper is to apply and evaluate the bibliometric method Bradfordizing for information retrieval (IR) experiments. Bradfordizing is used for generating core document sets for subject-specific questions and to reorder result sets from distributed searches. The method will be applied and tested in a controlled scenario of scientific literature databases from social and political sciences, economics, psychology and medical science (SOLIS, SoLit, USB Köln Opac, CSA Sociological Abstracts, World Affairs Online, Psyndex and Medline) and 164 standardized topics. An evaluation of the method and its effects is carried out in two laboratory-based information retrieval experiments (CLEF and KoMoHe) using a controlled document corpus and human relevance assessments. The results show that Bradfordizing is a very robust method for re-ranking the main document types (journal articles and monographs) in today’s digital libraries (DL). The IR tests show that relevance distributions after re-ranking improve at a significant level if articles in the core are compared with articles in the succeeding zones. The items in the core are significantly more often assessed as relevant, than items in zone 2 (z2) or zone 3 (z3). The improvements between the zones are statistically significant based on the Wilcoxon signed-rank test and the paired T-Test

    Physicochemical factors influence the abundance and culturability of human enteric pathogens and fecal indicator organisms in estuarine water and sediment

    Get PDF
    To assess fecal pollution in coastal waters, current monitoring is reliant on culture-based enumeration of bacterial indicators, which does not account for the presence of viable but non-culturable or sediment-associated micro-organisms, preventing effective quantitative microbial risk assessment (QMRA). Seasonal variability in viable but non-culturable or sediment-associated bacteria challenge the use of fecal indicator organisms (FIOs) for water monitoring. We evaluated seasonal changes in FIOs and human enteric pathogen abundance in water and sediments from the Ribble and Conwy estuaries in the UK. Sediments possessed greater bacterial abundance than the overlying water column, however, key pathogenic species (Shigella spp., Campylobacter jejuni, Salmonella spp., hepatitis A virus, hepatitis E virus and norovirus GI and GII) were not detected in sediments. Salmonella was detected in low levels in the Conwy water in spring/summer and norovirus GII was detected in the Ribble water in winter. The abundance of E. coli and Enterococcus spp. quantified by culture-based methods, rarely matched the abundance of these species when measured by qPCR. The discrepancy between these methods was greatest in winter at both estuaries, due to low CFU's, coupled with higher gene copies (GC). Temperature accounted for 60% the variability in bacterial abundance in water in autumn, whilst in winter salinity explained 15% of the variance. Relationships between bacterial indicators/pathogens and physicochemical variables were inconsistent in sediments, no single indicator adequately described occurrence of all bacterial indicators/pathogens. However, important variables included grain size, porosity, clay content and concentrations of Zn, K, and Al. Sediments with greater organic matter content and lower porosity harbored a greater proportion of non-culturable bacteria (including dead cells and extracellular DNA) in winter. Here, we show the link between physicochemical variables and season which govern culturability of human enteric pathogens and FIOs. Therefore, knowledge of these factors is critical for accurate microbial risk assessment. Future water quality management strategies could be improved through monitoring sediment-associated bacteria and non-culturable bacteria. This could facilitate source apportionment of human enteric pathogens and FIOs and direct remedial action to improve water quality
    corecore