751 research outputs found
Gradual Translocation of Spatial Correlates of Neuronal Firing in the Hippocampus toward Prospective Reward Locations
SummaryIn a continuous T-maze alternation task, CA1 complex-spike neurons in the hippocampus differentially fire as the rat traverses overlapping segments of the maze (i.e., the stem) repeatedly via alternate routes. The temporal dynamics of this phenomenon were further investigated in the current study. Rats learned the alternation task from the first day of acquisition and the differential firing pattern in the stem was observed accordingly. More importantly, we report a phenomenon in which spatial correlates of CA1 neuronal ensembles gradually changed from their original firing locations, shifting toward prospective goal locations in the continuous T-maze alternation task. The relative locations of simultaneously recorded firing fields, however, were preserved within the ensemble spatial representation during this shifting. The within-session shifts in preferred firing locations in the absence of any changes in the environment suggest that certain cognitive factors can significantly alter the location-bound coding scheme of hippocampal neurons
The Impact of Volunteering on Seniors’ Health and Quality of Life: An Assessment of the Retired and Senior Volunteer Program
Past research suggests that senior citizens often face challenges related to deteriorating physical and men- tal health, and the quality of their lives may suffer as a result. Past research also suggests that volunteering can improve the health and quality of life for seniors. In the present study, 451 volunteers enrolled in the Retired and Senior Volunteer Program (RSVP) completed surveys including questions regarding their volunteer experiences and how these experiences have affected their health and quality of life. The results suggest that volunteering through RSVP is associated with improvements in health and quality of life across a variety of dimensions. Furthermore, these improvements may be particularly greater for women, current volunteers, and older seniors. These findings may help guide interventions designed to enhance the health and well-being of senior citizens in a variety of settings
Detection of skewed X-chromosome inactivation in Fragile X syndrome and X chromosome aneuploidy using quantitative melt analysis.
Methylation of the fragile X mental retardation 1 (FMR1) exon 1/intron 1 boundary positioned fragile X related epigenetic element 2 (FREE2), reveals skewed X-chromosome inactivation (XCI) in fragile X syndrome full mutation (FM: CGGÂ >Â 200) females. XCI skewing has been also linked to abnormal X-linked gene expression with the broader clinical impact for sex chromosome aneuploidies (SCAs). In this study, 10 FREE2 CpG sites were targeted using methylation specific quantitative melt analysis (MS-QMA), including 3 sites that could not be analysed with previously used EpiTYPER system. The method was applied for detection of skewed XCI in FM females and in different types of SCA. We tested venous blood and saliva DNA collected from 107 controls (CGGÂ <Â 40), and 148 FM and 90 SCA individuals. MS-QMA identified: (i) most SCAs if combined with a Y chromosome test; (ii) locus-specific XCI skewing towards the hypomethylated state in FM females; and (iii) skewed XCI towards the hypermethylated state in SCA with 3 or more X chromosomes, and in 5% of the 47,XXY individuals. MS-QMA output also showed significant correlation with the EpiTYPER reference method in FM males and females (PÂ <Â 0.0001) and SCAs (PÂ <Â 0.05). In conclusion, we demonstrate use of MS-QMA to quantify skewed XCI in two applications with diagnostic utility
Drosophila melanogaster Mini Spindles TOG3 Utilizes Unique Structural Elements to Promote Domain Stability and Maintain a TOG1- and TOG2-like Tubulin-binding Surface
Microtubule-associated proteins regulate microtubule (MT) dynamics spatially and temporally, which is essential for proper formation of the bipolar mitotic spindle. The XMAP215 family is comprised of conserved microtubule-associated proteins that use an array of tubulin-binding tumor overexpressed gene (TOG) domains, consisting of six (A–F) Huntingtin, elongation factor 3, protein phosphatase 2A, target of rapamycin (HEAT) repeats, to robustly increase MT plus-end polymerization rates. Recent work showed that TOG domains have differentially conserved architectures across the array, with implications for position-dependent TOG domain tubulin binding activities and function within the XMAP215 MT polymerization mechanism. Although TOG domains 1, 2, and 4 are well described, structural and mechanistic information characterizing TOG domains 3 and 5 is outstanding. Here, we present the structure and characterization of Drosophila melanogaster Mini spindles (Msps) TOG3. Msps TOG3 has two unique features as follows: the first is a C-terminal tail that stabilizes the ultimate four HEAT repeats (HRs), and the second is a unique architecture in HR B. Structural alignments of TOG3 with other TOG domain structures show that the architecture of TOG3 is most similar to TOG domains 1 and 2 and diverges from TOG4. Docking TOG3 onto recently solved Stu2 TOG1· and TOG2·tubulin complex structures suggests that TOG3 uses similarly conserved tubulin-binding intra-HEAT loop residues to engage α- and β-tubulin. This indicates that TOG3 has maintained a TOG1- and TOG2-like TOG-tubulin binding mode despite structural divergence. The similarity of TOG domains 1–3 and the divergence of TOG4 suggest that a TOG domain array with polarized structural diversity may play a key mechanistic role in XMAP215-dependent MT polymerization activity
Using Patterns of Genetic Association to Elucidate Shared Genetic Etiologies Across Psychiatric Disorders
Twin studies indicate that latent genetic factors overlap across comorbid psychiatric disorders. In this study, we used a novel approach to elucidate shared genetic factors across psychiatric outcomes by clustering single nucleotide polymorphisms based on their genome-wide association patterns. We applied latent profile analysis (LPA) to p-values resulting from genome-wide association studies across three phenotypes: symptom counts of alcohol dependence (AD), antisocial personality disorder (ASP), and major depression (MD), using the European–American case-control genome-wide association study subsample of the collaborative study on the genetics of alcoholism (N = 1399). In the 3-class model, classes were characterized by overall low associations (85.6% of SNPs), relatively stronger association only with MD (6.8%), and stronger associations with AD and ASP but not with MD (7.6%), respectively. These results parallel the genetic factor structure identified in twin studies. The findings suggest that applying LPA to association results across multiple disorders may be a promising approach to identify the specific genetic etiologies underlying shared genetic variance
Longitudinal associations of away-from-home eating, snacking, screen time, and physical activity behaviors with cardiometabolic risk factors among Chinese children and their parents
Background: Little is known about intergenerational differences in associations of urbanization-related lifestyle behaviors with cardiometabolic risk factors in children and their parents in rapidly urbanizing China
Patterns and correlates of drug-related ED visits: results from a national survey
Drug treatment can be effective in community-based settings, but drug users tend to under-utilize these treatment options and instead seek services in emergency departments (ED) and other acute care settings. The goals of this study were to describe prevalence and correlates of drug-related ED visits
The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array
Structures of Drosophila Msps TOG4 and human ch-TOG TOG4 are presented. TOG4 departs from the other TOG structures and predicts novel α-tubulin engagement. Whereas TOG domains across the array have different tubulin-binding properties, cellular studies show that a fully functional TOG array is required for microtubule polymerase activity.XMAP215 family members are potent microtubule (MT) polymerases, with mutants displaying reduced MT growth rates and aberrant spindle morphologies. XMAP215 proteins contain arrayed tumor overexpressed gene (TOG) domains that bind tubulin. Whether these TOG domains are architecturally equivalent is unknown. Here we present crystal structures of TOG4 from Drosophila Msps and human ch-TOG. These TOG4 structures architecturally depart from the structures of TOG domains 1 and 2, revealing a conserved domain bend that predicts a novel engagement with α-tubulin. In vitro assays show differential tubulin-binding affinities across the TOG array, as well as differential effects on MT polymerization. We used Drosophila S2 cells depleted of endogenous Msps to assess the importance of individual TOG domains. Whereas a TOG1-4 array largely rescues MT polymerization rates, mutating tubulin-binding determinants in any single TOG domain dramatically reduces rescue activity. Our work highlights the structurally diverse yet positionally conserved TOG array that drives MT polymerization
- …