2,519 research outputs found

    Are the demographics for squamous cell cancer in the head and neck changing in the United Kingdom?

    Get PDF
    Head and neck squamous cell carcinoma is well known to be more common in men than women. Smoking and alcohol are the key risk factors causing such malignancies and there are several publications which have suggested that the prevalence of these diseases is increasing more in women than in men in western countries due to increased smoking and alcohol use.We collected our data at the Institute of Laryngology and Otology from the last 45 years and analysed the disease ratios in male to female patients in different sites within the head and neck. Our results revealed a decreasing male to female ratio, though this was not statistically significant. However, it draws attention to the increasing number of women with head and neck cancer, which may reflect their increasing use of cigarettes and alcohol

    Membrane invaginations reveal cortical sites that pull on mitotic spindles in one-cell C. elegans embryos.

    Get PDF
    Asymmetric positioning of the mitotic spindle in C. elegans embryos is mediated by force-generating complexes that are anchored at the plasma membrane and that pull on microtubules growing out from the spindle poles. Although asymmetric distribution of the force generators is thought to underlie asymmetric positioning of the spindle, the number and location of the force generators has not been well defined. In particular, it has not been possible to visualize individual force generating events at the cortex. We discovered that perturbation of the acto-myosin cortex leads to the formation of long membrane invaginations that are pulled from the plasma membrane toward the spindle poles. Several lines of evidence show that the invaginations, which also occur in unperturbed embryos though at lower frequency, are pulled by the same force generators responsible for spindle positioning. Thus, the invaginations serve as a tool to localize the sites of force generation at the cortex and allow us to estimate a lower limit on the number of cortical force generators within the cell

    Supercapacitor Degradation: Understanding Mechanisms of Cycling-Induced Deterioration and Failure of a Pseudocapacitor

    Get PDF
    Owing to a reputation for long lifetimes and excellent cycle stability, degradation in supercapacitors has largely been overlooked. In this work, we demonstrate that significant degradation in some commercial supercapacitors can in fact occur early in their life, leading to a rapid loss in capacitance, especially when utilized in full voltage range, high charge-discharge frequency applications. By using a commercial 300 F lithium-ion pseudocapacitor rated for 100,000 charge/discharge cycles as an example system, it is shown that a ∼96 % loss in capacitance over the first ∼2000 cycles is caused by significant structural and chemical change in the cathode active material (LiMn2O4, LMO). Multi-scale in-situ and ex-situ characterization, using a combination of X-ray computed tomography, Raman spectroscopy and X-ray photoelectron spectroscopy, shows that while minimal material loss (∼5.5 %), attributed to the dissolution of Mn2+, is observed, the primary mode of degradation is due to manganese charge disproportionation (Mn3+→Mn4++Mn2+) and its physical consequences (i. e. microstrain formation, particle fragmentation, loss of conductivity etc.). In contrast to prior understanding of LMO material degradation in battery systems, negligible contributions from cubic-to-tetragonal phase transitions are observed. Hence, as supercapacitors are becoming more widely utilized in real-world applications, this work demonstrates that it is vital to understand the mechanisms by which this family of devices change during their lifetimes, not just for lithium-ion pseudocapacitors, but for a wide range of commercial chemistries

    Efficient labelling for efficient deep learning: the benefit of a multiple-image-ranking method to generate high volume training data applied to ventricular slice level classification in cardiac MRI

    Get PDF
    BACKGROUND: Getting the most value from expert clinicians' limited labelling time is a major challenge for artificial intelligence (AI) development in clinical imaging. We present a novel method for ground-truth labelling of cardiac magnetic resonance imaging (CMR) image data by leveraging multiple clinician experts ranking multiple images on a single ordinal axis, rather than manual labelling of one image at a time. We apply this strategy to train a deep learning (DL) model to classify the anatomical position of CMR images. This allows the automated removal of slices that do not contain the left ventricular (LV) myocardium. METHODS: Anonymised LV short-axis slices from 300 random scans (3,552 individual images) were extracted. Each image's anatomical position relative to the LV was labelled using two different strategies performed for 5 hours each: (I) 'one-image-at-a-time': each image labelled according to its position: 'too basal', 'LV', or 'too apical' individually by one of three experts; and (II) 'multiple-image-ranking': three independent experts ordered slices according to their relative position from 'most-basal' to 'most apical' in batches of eight until each image had been viewed at least 3 times. Two convolutional neural networks were trained for a three-way classification task (each model using data from one labelling strategy). The models' performance was evaluated by accuracy, F1-score, and area under the receiver operating characteristics curve (ROC AUC). RESULTS: After excluding images with artefact, 3,323 images were labelled by both strategies. The model trained using labels from the 'multiple-image-ranking strategy' performed better than the model using the 'one-image-at-a-time' labelling strategy (accuracy 86% vs. 72%, P=0.02; F1-score 0.86 vs. 0.75; ROC AUC 0.95 vs. 0.86). For expert clinicians performing this task manually the intra-observer variability was low (Cohen's κ=0.90), but the inter-observer variability was higher (Cohen's κ=0.77). CONCLUSIONS: We present proof of concept that, given the same clinician labelling effort, comparing multiple images side-by-side using a 'multiple-image-ranking' strategy achieves ground truth labels for DL more accurately than by classifying images individually. We demonstrate a potential clinical application: the automatic removal of unrequired CMR images. This leads to increased efficiency by focussing human and machine attention on images which are needed to answer clinical questions

    Islands Containing Slowly Hydrolyzable GTP Analogs Promote Microtubule Rescues

    Get PDF
    Microtubules are dynamic polymers of GTP- and GDP-tubulin that undergo stochastic transitions between growing and shrinking phases. Rescues, the conversion from shrinking to growing, have recently been proposed to be to the result of regrowth at GTP-tubulin islands within the lattice of growing microtubules. By introducing mixed GTP/GDP/GMPCPP (GXP) regions within the lattice of dynamic microtubules, we reconstituted GXP islands in vitro (GMPCPP is the slowly hydrolyzable GTP analog guanosine-5′-[(α,β)-methyleno]triphosphate). We found that such islands could reproducibly induce rescues and that the probability of rescue correlated with both the size of the island and the percentage of GMPCPP-tubulin within the island. The islands slowed the depolymerization rate of shortening microtubules and promoted regrowth more readily than GMPCPP seeds. Together, these findings provide new mechanistic insights supporting the possibility that rescues could be triggered by enriched GTP-tubulin regions and present a new tool for studying such rescue events in vitro

    On the Relationships between Decision Management and Performance Measurement

    Get PDF
    Decision management is of utmost importance for the achievement of strategic and operational goals in any organisational context. Therefore, decisions should be considered as first-class citizens that need to be modelled, analysed, monitored to track their performance, and redesigned if necessary. Up to now, existing literature that studies decisions in the context of business processes has focused on the analysis of the definition of decisions themselves, in terms of accuracy, certainty, consistency, covering and correctness. However, to the best of our knowledge, no prior work exists that analyses the relationship between decisions and performance measurement. This paper identifies and analyses this relationship from three different perspectives, namely: the impact of decisions on process performance, the performance measurement of decisions, and the use of performance indicators in the definition of decisions. Furthermore, we also introduce solutions for the representation of these relationships based, amongst others, on the DMN standard.Ministerio de Economía y Competitividad BELI (TIN2015-70560-R)Junta de Andalucía P12-TIC-1867Junta de Andalucía P10-TIC-590

    On the geometry of the set of symmetric matrices with repeated eigenvalues

    Get PDF
    We investigate some geometric properties of the real algebraic variety \u394 of symmetric matrices with repeated eigenvalues. We explicitly compute the volume of its intersection with the sphere and prove a Eckart\u2013Young\u2013Mirsky-type theorem for the distance function from a generic matrix to points in \u394. We exhibit connections of our study to real algebraic geometry (computing the Euclidean distance degree of \u394) and random matrix theory

    Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E_T

    Get PDF
    We examine the prospects for testing SO(10) Yukawa-unified supersymmetric models during the first year of LHC running at \sqrt{s}= 7 TeV, assuming integrated luminosity values of 0.1 to 1 fb^-1. We consider two cases: the Higgs splitting (HS) and the D-term splitting (DR3) models. Each generically predicts light gluinos and heavy squarks, with an inverted scalar mass hierarchy. We hence expect large rates for gluino pair production followed by decays to final states with large b-jet multiplicity. For 0.2 fb^-1 of integrated luminosity, we find a 5 sigma discovery reach of m(gluino) ~ 400 GeV even if missing transverse energy, E_T^miss, is not a viable cut variable, by examining the multi-b-jet final state. A corroborating signal should stand out in the opposite-sign (OS) dimuon channel in the case of the HS model; the DR3 model will require higher integrated luminosity to yield a signal in the OS dimuon channel. This region may also be probed by the Tevatron with 5-10 fb^-1 of data, if a corresponding search in the multi-b+ E_T^miss channel is performed. With higher integrated luminosities of ~1 fb^-1, using E_T^miss plus a large multiplicity of b-jets, LHC should be able to discover Yukawa-unified SUSY with m(gluino) up to about 630 GeV. Thus, the year 1 LHC reach for Yukawa-unified SUSY should be enough to either claim a discovery of the gluino, or to very nearly rule out this class of models, since higher values of m(gluino) lead to rather poor Yukawa unification.Comment: 32 pages including 31 EPS figure
    corecore