229 research outputs found

    Atomic-scale images of charge ordering in a mixed-valence manganite

    Get PDF
    Transition-metal perovskite oxides exhibit a wide range of extraordinary but imperfectly understood phenomena. Charge, spin, orbital, and lattice degrees of freedom all undergo order-disorder transitions in regimes not far from where the best-known of these phenomena, namely high-temperature superconductivity of the copper oxides, and the 'colossal' magnetoresistance of the manganese oxides, occur. Mostly diffraction techniques, sensitive either to the spin or the ionic core, have been used to measure the order. Unfortunately, because they are only weakly sensitive to valence electrons and yield superposition of signals from distinct mesoscopic phases, they cannot directly image mesoscopic phase coexistence and charge ordering, two key features of the manganites. Here we describe the first experiment to image charge ordering and phase separation in real space with atomic-scale resolution in a transition metal oxide. Our scanning tunneling microscopy (STM) data show that charge order is correlated with structural order, as well as with whether the material is locally metallic or insulating, thus giving an atomic-scale basis for descriptions of the manganites as mixtures of electronically and structurally distinct phases.Comment: 8 pages, 4 figures, 19 reference

    Bi-layer splitting in overdoped high TcT_{c} cuprates

    Full text link
    Recent angle-resolved photoemission data for overdoped Bi2212 are explained. Of the peak-dip-hump structure, the peak corresponds the q=0\vec q =0 component of a hole condensate which appears at TcT_c. The fluctuating part of this same condensate produces the hump. The bilayer splitting is large enough to produce a bonding hole and an electron antibonding quasiparticle Fermi surface. Smaller bilayer splittings observed in some experiments reflect the interaction of the peak structure with quasiparticle states near, but not at, the Fermi surface.Comment: 4 pages with 2 figures - published versio

    Dispersive charge density wave excitations and temperature dependent commensuration in Bi2Sr2CaCu2O8+{\delta}

    Full text link
    Experimental evidence on high-Tc cuprates reveals ubiquitous charge density wave (CDW) modulations, which coexist with superconductivity. Although the CDW had been predicted by theory, important questions remain about the extent to which the CDW influences lattice and charge degrees of freedom and its characteristics as functions of doping and temperature. These questions are intimately connected to the origin of the CDW and its relation to the mysterious cuprate pseudogap. Here, we use ultrahigh resolution resonant inelastic x-ray scattering (RIXS) to reveal new CDW character in underdoped Bi2Sr2CaCu2O8+{\delta} (Bi2212). At low temperature, we observe dispersive excitations from an incommensurate CDW that induces anomalously enhanced phonon intensity, unseen using other techniques. Near the pseudogap temperature T*, the CDW persists, but the associated excitations significantly weaken and the CDW wavevector shifts, becoming nearly commensurate with a periodicity of four lattice constants. The dispersive CDW excitations, phonon anomaly, and temperature dependent commensuration provide a comprehensive momentum space picture of complex CDW behavior and point to a closer relationship with the pseudogap state

    Giant phonon anomalies and central peak due to charge density wave formation in YBa2_2Cu3_3O6.6_{6.6}

    Full text link
    The electron-phonon interaction is a major factor influencing the competition between collective instabilities in correlated-electron materials, but its role in driving high-temperature superconductivity in the cuprates remains poorly understood. We have used high-resolution inelastic x-ray scattering to monitor low-energy phonons in YBa2_2Cu3_3O6.6_{6.6} (superconducting Tc=61\bf T_c = 61 K), which is close to a charge density wave (CDW) instability. Phonons in a narrow range of momentum space around the CDW ordering vector exhibit extremely large superconductivity-induced lineshape renormalizations. These results imply that the electron-phonon interaction has sufficient strength to generate various anomalies in electronic spectra, but does not contribute significantly to Cooper pairing. In addition, a quasi-elastic "central peak" due to CDW nanodomains is observed in a wide temperature range above and below Tc\bf T_c, suggesting that the gradual onset of a spatially inhomogeneous CDW domain state with decreasing temperature is a generic feature of the underdoped cuprates

    Phase Separation Models for Cuprate Stripe Arrays

    Full text link
    An electronic phase separation model provides a natural explanation for a large variety of experimental results in the cuprates, including evidence for both stripes and larger domains, and a termination of the phase separation in the slightly overdoped regime, when the average hole density equals that on the charged stripes. Several models are presented for charged stripes, showing how density waves, superconductivity, and strong correlations compete with quantum size effects (QSEs) in narrow stripes. The energy bands associated with the charged stripes develop in the middle of the Mott gap, and the splitting of these bands can be understood by considering the QSE on a single ladder.Comment: significant revisions: includes island phase, 16 eps figures, revte

    Inhomogeneous d-wave superconducting state of a doped Mott insulator

    Full text link
    Recent scanning tunneling microscope (STM) measurements discovered remarkable electronic inhomogeneity, i.e. nano-scale spatial variations of the local density of states (LDOS) and the superconducting energy gap, in the high-Tc superconductor BSCCO. Based on the experimental findings we conjectured that the inhomogeneity arises from variations in local oxygen doping level and may be generic of doped Mott insulators which behave rather unconventionally in screening the dopant ionic potentials at atomic scales comparable to the short coherence length. Here, we provide theoretical support for this picture. We study a doped Mott insulator within a generalized t-J model, where doping is accompanied by ionic Coulomb potentials centered in the BiO plane. We calculate the LDOS spectrum, the integrated LDOS, and the local superconducting gap, make detailed comparisons to experiments, and find remarkable agreement with the experimental data. We emphasize the unconventional screening in a doped Mott insulator and show that nonlinear screening dominates at nano-meter scales which is the origin of the electronic inhomogeneity. It leads to strong inhomogeneous redistribution of the local hole density and promotes the notion of a local doping concentration. We find that the inhomogeneity structure manifests itself at all energy scales in the STM tunneling differential conductance, and elucidate the similarity and the differences between the data obtained in the constant tunneling current mode and the same data normalized to reflect constant tip-to-sample distance. We also discuss the underdoped case where nonlinear screening of the ionic potential turns the spatial electronic structure into a percolative mixture of patches with smaller pairing gaps embedded in a background with larger gaps to single particle excitations.Comment: 19 pages, final versio

    Physiological profile of world-class high altitude climbers

    Get PDF
    The functional characteristics of six world-class high-altitude mountaineers were assessed 2-12 mo after the last high-altitude climb. Each climber on one or more several occasions had reached altitudes of 8,500 m or above without supplementary O2. Static and dynamic lung volumes and right and left echocardiographic measurements were found to be within normal limits of sedentary controls (SC). Muscle fiber distribution was 70% type I, 22% type IIa, and 7% type IIb. Mean muscle fiber cross-sectional area was significantly smaller than that of SC (-15%) and of long-distance runners (LDR, -51%). The number of capillaries per unit cross-sectional area was significantly greater than that of SC (+40%). Total mitochondrial volume was not significantly different from that of SC, but its subsarcolemmal component was equal to that of LDR. Average maximal O2 consumption was 60 \ub1 6 ml\ub7kg-1\ub7min-1, which is between the values of SC and LDR. Average maximal anerobic power was 28 \ub1 2.5 W\ub7kg-1, which is equal to that of SC and 40% lower than that of competitive high jumpers. All subjects were characterized by resting hyperventilation both in normoxia and in moderate (inspired O2 partial pressure = 77 Torr) hypoxia resulting in higher oxyhemoglobin saturation levels in hypoxia. The ventilatory response to four tidal volumes of pure O2 was similar to that of SC. It is concluded that elite high-alitude climbers do not have physiological adaptations to high altitude that justify their unique performance

    Doping dependence of the superconducting gap in Bi2Sr2CaCu2O{8 + delta}

    Full text link
    Bi2Sr2CaCu2O{8 + \delta} crystals with varying hole concentrations (0.12 < p < 0.23) were studied to investigate the effects of doping on the symmetry and magnitude of the superconducting gap. Electronic Raman scattering experiments that sample regions of the Fermi surface near the diagonal (B_{2g}) and principal axes (B_{1g}) of the Brillouin Zone have been utilized. The frequency dependence of the Raman response function at low energies is found to be linear for B_{2g} and cubic for B_{1g} (T< T_c). The latter observations have led us to conclude that the doping dependence of the superconducting gap is consistent with d_{x^2-y^2} symmetry, for slightly underdoped and overdoped crystals. Studies of the pair-breaking peak found in the B_{1g} spectra demonstrate that the magnitude of the maximum gap decreases monotonically with increasing hole doping, for p > 0.12. Based on the magnitude of the B_{1g} renormalization, it is found that the number of quasiparticles participating in pairing increases monotonically with increased doping. On the other hand, the B_{2g} spectra show a weak "pair-breaking peak" that follows a parabolic-like dependence on hole concentration, for 0.12 < p < 0.23.Comment: 9 pages REvTex document including 8 eps figures; new table II; changes to Fig. 5 and tex

    How to detect fluctuating order in the high-temperature superconductors

    Full text link
    We discuss fluctuating order in a quantum disordered phase proximate to a quantum critical point, with particular emphasis on fluctuating stripe order. Optimal strategies for extracting information concerning such local order from experiments are derived with emphasis on neutron scattering and scanning tunneling microscopy. These ideas are tested by application to two model systems - the exactly solvable one dimensional electron gas with an impurity, and a weakly-interacting 2D electron gas. We extensively review experiments on the cuprate high-temperature superconductors which can be analyzed using these strategies. We adduce evidence that stripe correlations are widespread in the cuprates. Finally, we compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi liquid state, and strong coupling, in which the magnetism is associated with well defined localized spins, and stripes are viewed as a form of micro-phase separation. We present quantitative indicators that the latter view better accounts for the observed stripe phenomena in the cuprates.Comment: 43 pages, 11 figures, submitted to RMP; extensively revised and greatly improved text; one new figure, one new section, two new appendices and more reference

    Order and quantum phase transitions in the cuprate superconductors

    Full text link
    It is now widely accepted that the cuprate superconductors are characterized by the same long-range order as that present in the Bardeen-Cooper-Schrieffer (BCS) theory: that associated with the condensation of Cooper pairs. We argue that many physical properties of the cuprates require interplay with additional order parameters associated with a proximate Mott insulator. We review a classification of Mott insulators in two dimensions, and contend that the experimental evidence so far shows that the class appropriate to the cuprates has collinear spin correlations, bond order, and confinement of neutral, spin S=1/2 excitations. Proximity to second-order quantum phase transitions associated with these orders, and with the pairing order of BCS, has led to systematic predictions for many physical properties. We use this context to review the results of recent neutron scattering, fluxoid detection, nuclear magnetic resonance, and scanning tunnelling microscopy experiments.Comment: 20 pages, 13 figures, non-technical review article; some technical details in the companion review cond-mat/0211027; (v3) added refs; (v4) numerous improvements thanks to the referees, to appear in Reviews of Modern Physics; (v6) final version as publishe
    corecore