397 research outputs found

    Impurity-Induced Bound Excitations on the Surface of Bi2Sr2CaCu2O8

    Full text link
    We have probed the effects of atomic-scale impurities on superconductivity in Bi_{2}Sr_{2}CaCu_{2}O_{8} by performing low-temperature tunneling spectroscopy measurements with a scanning tunneling microscope. Our results show that non-magnetic defect structures at the surface create localized low-energy excitations in their immediate vicinity. The impurity-induced excitations occur over a range of energies including the middle of the superconducting gap, at the Fermi level. Such a zero bias state is a predicted feature for strong non-magnetic scattering in a d-wave superconductor.Comment: 4 pages, revtex, 4 figures. To appear in Physical Review Letter

    Periodic Coherence Peak Height Modulations in Superconducting BSCCO

    Full text link
    In this paper we analyze, using scanning tunneling spectroscopy (STS), the local density of electronic states (LDOS) in nearly optimally doped BSCCO in zero field. We see both dispersive and non-dispersive spatial LDOS modulations as a function of energy in our samples. Moreover, a spatial map of the superconducting coherence peak heights shows the same structure as the low energy LDOS. This suggests that these non-dispersive LDOS modulations originate from an underlying charge-density modulation which interacts with superconductivity.Comment: 8 pages, 5 figures with 15 total eps file

    Quasiparticle interference patterns as a test for the nature of the pseudogap phase in the cuprate superconductors

    Full text link
    Electrons, when scattered by static random disorder, form standing waves that can be imaged using scanning tunneling microscopy. Such interference patterns, observable by the recently developed technique of Fourier transform scanning tunneling spectroscopy (FT-STS), are shown to carry unique fingerprints characteristic of the electronic order present in a material. We exploit this feature of the FT-STS technique to propose a test for the nature of the enigmatic pseudogap phase in the high-TcT_c cuprate superconductors. Through their sensitivity to the quasiparticle spectra and coherence factors, the FT-STS patterns in principle carry enough information to unambiguously determine the nature of the condensate responsible for the pseudogap phenomenon. We argue that the next generation of FT-STS experiments, currently underway, should be able to distinguish between the pseudogap dominated by the remnants of superconducting order from the pseudogap dominated by some competing order in the particle-hole channel. Using general arguments and detailed numerical calculations, we point to certain fundamental differences between the two scenarios and discuss the prospects for future experiments.Comment: 15 pages REVTeX + 9 ps figures. For related work and info visit http://www.physics.ubc.ca/~franz; version 2 to appear in IJMP

    STM/STS Study on 4a X 4a Electronic Charge Order of Superconducting Bi2Sr2CaCu2O8+d

    Full text link
    We performed low-bias STM measurements on underdoped Bi2212 crystals, and confirmed that a two-dimensional (2D) superstructure with a periodicity of four lattice constants (4a) is formed within the Cu-O plane at T<Tc. This 4a X 4a superstructure, oriented along the Cu-O bonding direction, is nondispersive and more intense in lightly doped samples with a zero temperature pseudogap (ZTPG) than in samples with a d-wave gap. The nondispersive 4a X 4a superstructure was clearly observed within the ZTPG or d-wave gap, while it tended to fade out outside the gaps. The present results provide a useful test for various models proposed for an electronic order hidden in the underdoped region of high-Tc cuprates.Comment: 4 pages, submitted to J. Phys. Soc. Jp

    Kondo effect of non-magnetic impurities and the co-existing charge order in the cuprate superconductors

    Full text link
    We present a theory of Kondo effect caused by an induced magnetic moment near non-magnetic impurities such as Zn and Li in the cuprate superconductors. Based on the co-existence of charge order and superconductivity, a natural description of the induced moment and the resulting Kondo effect is obtained in the framework of bond-operator theory of microscopic t-J-V Hamiltonian. The local density of state near impurities is computed in a self-consistent Bogoliubov-de Gennes theory which shows a low-energy peak in the middle of superconducting gap. Our theory also suggests that the charge order can be enhanced near impuries.Comment: 5 pages, 4 figure

    The Energy-dependent Checkerboard Patterns in Cuprate Superconductors

    Full text link
    Motivated by the recent scanning tunneling microscopy (STM) experiments [J. E. Hoffman {\it et al.}, Science {\bf 297}, 1148 (2002); K. McElroy {\it et al.}, Nature (to be published)], we investigate the real space local density of states (LDOS) induced by weak disorder in a d-wave superconductor. We first present the energy dependent LDOS images around a single weak defect at several energies, and then point out that the experimentally observed checkerboard pattern in the LDOS could be understood as a result of quasiparticle interferences by randomly distributed defects. It is also shown that the checkerboard pattern oriented along 45045^0 to the Cu-O bonds at low energies would transform to that oriented parallel to the Cu-O bonds at higher energies. This result is consistent with the experiments.Comment: 3 pages, 3 figure

    Muon-Spin Rotation and Magnetization Studies of Chemical and Hydrostatic Pressure Effects in EuFe2(As1− x P x )2

    Get PDF
    The magnetic phase diagram of EuFe2(As1−x P x )2 was investigated by means of magnetization and muon-spin rotation (μSR) studies as a function of chemical (isovalent substitution of As by P) and hydrostatic pressure. The magnetic phase diagrams of the magnetic ordering of the Eu and Fe spins with respect to P content and hydrostatic pressure are determined and discussed. The present investigations reveal that the magnetic coupling between the Eu and the Fe sublattices strongly depends on chemical and hydrostatic pressure. It is found that chemical and hydrostatic pressures have a similar effect on the Eu and Fe magnetic orde

    Atomic-scale images of charge ordering in a mixed-valence manganite

    Get PDF
    Transition-metal perovskite oxides exhibit a wide range of extraordinary but imperfectly understood phenomena. Charge, spin, orbital, and lattice degrees of freedom all undergo order-disorder transitions in regimes not far from where the best-known of these phenomena, namely high-temperature superconductivity of the copper oxides, and the 'colossal' magnetoresistance of the manganese oxides, occur. Mostly diffraction techniques, sensitive either to the spin or the ionic core, have been used to measure the order. Unfortunately, because they are only weakly sensitive to valence electrons and yield superposition of signals from distinct mesoscopic phases, they cannot directly image mesoscopic phase coexistence and charge ordering, two key features of the manganites. Here we describe the first experiment to image charge ordering and phase separation in real space with atomic-scale resolution in a transition metal oxide. Our scanning tunneling microscopy (STM) data show that charge order is correlated with structural order, as well as with whether the material is locally metallic or insulating, thus giving an atomic-scale basis for descriptions of the manganites as mixtures of electronically and structurally distinct phases.Comment: 8 pages, 4 figures, 19 reference

    Local edge modes in doped cuprates with checkerboard polaronic heterogeneity

    Full text link
    We study a periodic polaronic system, which exhibits a nanoscale superlattice structure, as a model for hole-doped cuprates with checkerboard-like heterogeneity, as has been observed recently by scanning tunneling microscopy (STM). Within this model, the electronic and phononic excitations are investigated by applying an unrestricted Hartree-Fock and a random phase approximation (RPA) to a multiband Peierls-Hubbard Hamiltonian in two dimensions

    Neutron scattering study of the effects of dopant disorder on the superconductivity and magnetic order in stage-4 La_2CuO_{4+y}

    Full text link
    We report neutron scattering measurements of the structure and magnetism of stage-4 La_2CuO_{4+y} with T_c ~42 K. Our diffraction results on a single crystal sample demonstrate that the excess oxygen dopants form a three-dimensional ordered superlattice within the interstitial regions of the crystal. The oxygen superlattice becomes disordered above T ~ 330 K, and a fast rate of cooling can freeze-in the disordered-oxygen state. Hence, by controlling the cooling rate, the degree of dopant disorder in our La_2CuO_{4+y} crystal can be varied. We find that a higher degree of quenched disorder reduces T_c by ~ 5 K relative to the ordered-oxygen state. At the same time, the quenched disorder enhances the spin density wave order in a manner analogous to the effects of an applied magnetic field.Comment: 4 figures included in text; submitted to PR
    corecore