27 research outputs found

    Relative palatability and efficacy of brodifacoum-25D conservation rodenticide pellets for mouse eradication on Midway Atoll

    Get PDF
    Invasive mice (Mus spp.) can negatively impact island species and ecosystems. Because fewer island rodent eradications have been attempted for mice compared to rats (Rattus spp.), less is known about efficacy and palatability of rodenticide baits for mouse eradications. We performed a series of bait acceptance and efficacy cage trials using a standard formulation of brodifacoum-based rodenticide on wild-caught mice from Sand Island, Midway Atoll, to help inform a proposed eradication there. Mice were offered ad libitum brodifacoum pellets along with various alternative food sources, and a “no choice” treatment group received only bait pellets. Mortality in the no choice trial was 100%; however, when offered alternative foods, mice preferred the alternative diets to the bait, leading to low mortality (40%). Because there was concern that the bittering agent Bitrex¼ in the formulation may have reduced palatability, we conducted a subsequent trial comparing brodifacoum bait with and without Bitrex. Mortality in the with-Bitrex treatment group was slightly higher, indicating that the bittering agent was not likely responsible for low efficacy. Laboratory trials cannot account for the numerous environmental and behavioral factors that influence bait acceptance nor replicate the true availability of alternative food sources in the environment, so low efficacy results from these trials should be interpreted cautiously and not necessarily as a measure of the likelihood of success or failure of a proposed eradication

    Brodifacoum Levels and Biomarkers in Coastal Fish Species following a Rodent Eradication in an Italian Marine Protected Area: Preliminary Results

    Get PDF
    Brodifacoum is the most common rodenticide used for the eradication of invasive rodents from islands. It blocks the vitamin K cycle, resulting in hemorrhages in target mammals. Non-target species may be incidentally exposed to brodifacoum, including marine species. A case study conducted on the Italian Marine Protected Area of Tavolara Island was reported after a rodent eradication using the aerial broadcast of a brodifacoum pellet. Brodifacoum presence and effects on non-target marine organisms were investigated. Different fish species were sampled, and a set of analyses was conducted to determine vitamin K and vitamin K epoxide reductase concentrations, prothrombin time, and erythrocytic nuclear abnormalities (ENA) assay. In all the examined organisms, brodifacoum was not detected. The results obtained showed differences in vitamin K and vitamin K epoxide concentrations among the samples studied, with a positive correlation for three species between vitamin K, vitamin K epoxide, and fish weight. The prothrombin time assay showed a good blood clotting capacity in the fish. Higher abnormality values were recorded for four species. The results of this study suggest that it is possible to hypothesize that the sampled fish were not likely to have been exposed to brodifacoum and that consequently there are no negative issues concerning human consumption

    Non-target species mortality and the measurement of brodifacoum rodenticide residues after a rat (Rattus rattus) eradication on Palmyra Atoll, tropical

    Get PDF
    a b s t r a c t The use of rodenticides to control or eradicate invasive rats (Rattus spp.) for conservation purposes has rapidly grown in the past decades, especially on islands. The non-target consequences and the fate of toxicant residue from such rodent eradication operations have not been well explored. In a cooperative effort, we monitored the application of a rodenticide, 'Brodifacoum 25W: Conservation', during an attempt to eradicate Rattus rattus from Palmyra Atoll. In 2011, Brodifacoum 25W: Conservation was aerially broadcasted twice over the entire atoll (2.5 km 2 ) at rates of 80 kg/ha and 75 kg/ha and a supplemental hand broadcast application (71.6 kg/ha) occurred three weeks after the second aerial application over a 10 ha area. We documented brodifacoum residues in soil, water, and biota, and documented mortality of non-target organisms. Some bait (14-19% of the target application rate) entered the marine environment to distances 7 m from the shore. After the application commenced, carcasses of 84 animals representing 15 species of birds, fish, reptiles and invertebrates were collected opportunistically as potential non-target mortalities. In addition, fish, reptiles, and invertebrates were systematically collected for residue analysis. Brodifacoum residues were detected in most (84.3%) of the animal samples analyzed. Although detection of residues in samples was anticipated, the extent and concentrations in many parts of the food web were greater than expected. Risk assessments should carefully consider application rates and entire food webs prior to operations using rodenticides. Published by Elsevier Ltd

    Intended Consequences Statement in Conservation Science and Practice

    Get PDF
    As the biodiversity crisis accelerates, the stakes are higher for threatened plants and animals. Rebuilding the health of our planet will require addressing underlying threats at many scales, including habitat loss and climate change. Conservation interventions such as habitat protection, management, restoration, predator control, trans location, genetic rescue, and biological control have the potential to help threatened or endangered species avert extinction. These existing, well-tested methods can be complemented and augmented by more frequent and faster adoption of new technologies, such as powerful new genetic tools. In addition, synthetic biology might offer solutions to currently intractable conservation problems. We believe that conservation needs to be bold and clear-eyed in this moment of great urgency

    Anticoagulant rodenticides, islands and animal welfare accountancy

    No full text
    Anticoagulant rodenticides are used to manage rodents in domestic, municipal, agricultural, and conservation settings. In mammals and birds, anticoagulant poisoning causes extensive hemorrhagic disruption, with the primary cause of death being severe internal bleeding occurring over days. The combined severity and duration of these effects represent poor welfare outcomes for poisoned animals. Noting a lack of formal estimates of numbers of rodents and nontarget animals killed by anticoagulant poisoning, the ready availability and worldwide use of anticoagulants suggest that very large numbers of animals are affected globally. Scrutiny of this rodent control method from scientific, public, and regulatory perspectives is being driven largely by mounting evidence of environmental transfer of residual anticoagulants resulting in harmful exposure in wild or domestic animals, but there is also nascent concern for the welfare of targeted rodents. Rodent control incurs a cumulative ledger of animal welfare costs over time as target populations reduced by poisoning eventually recover to an extent requiring another reduction. This ‘rolling toll’ presents a critical contrast to the animal welfare accountancy ledger for eradication scenarios, where rodent populations can be completely removed by methods including anticoagulant use and then kept from coming back (e.g., on islands). Successful eradications remove any future need to control rodents and to incur the associated animal welfare costs

    Non-target species mortality and the measurement of brodifacoum rodenticide residues after a rat (\u3ci\u3eRattus rattus\u3c/i\u3e) eradication on Palmyra Atoll, tropical Pacific

    Get PDF
    The use of rodenticides to control or eradicate invasive rats (Rattus spp.) for conservation purposes has rapidly grown in the past decades, especially on islands. The non-target consequences and the fate of toxicant residue from such rodent eradication operations have not been well explored. In a cooperative effort, we monitored the application of a rodenticide, ‘Brodifacoum 25W: Conservation’, during an attempt to eradicate Rattus rattus from Palmyra Atoll. In 2011, Brodifacoum 25W: Conservation was aerially broadcasted twice over the entire atoll (2.5 km2) at rates of 80 kg/ha and 75 kg/ha and a supplemental hand broadcast application (71.6 kg/ha) occurred three weeks after the second aerial application over a 10 ha area. We documented brodifacoum residues in soil, water, and biota, and documented mortality of non-target organisms. Some bait (14–19% of the target application rate) entered the marine environment to distances 7 m from the shore. After the application commenced, carcasses of 84 animals representing 15 species of birds, fish, reptiles and invertebrates were collected opportunistically as potential non-target mortalities. In addition, fish, reptiles, and invertebrates were systematically collected for residue analysis. Brodifacoum residues were detected in most (84.3%) of the animal samples analyzed. Although detection of residues in samples was anticipated, the extent and concentrations in many parts of the food web were greater than expected. Risk assessments should carefully consider application rates and entire food webs prior to operations using rodenticides
    corecore