8,319 research outputs found

    A model of the vessel traffic process

    Get PDF
    A model of the total vessel traffic control process that includes the functioning of the human operator (HO) is presented. The vessel traffic services (VTSs) are modeled in their possible role of monitor, conflict detector, and advisor for the total vessel traffic system. The model assumes a number of ships, with a given planned route, in a given confined area. The navigation of each ship is based on a planned route, which is updated by information about the visual scene, instruments, and the VTS. Both normal operation and collision avoidance are modeled. The model is implemented in a C program. Typical traffic situations have been simulated to showing the ability of the model to address realistic vessel traffic scenarios. The model can answer questions related to safety and efficiency, the effect of HO functioning, information necessary to perform tasks, communication between ships and VTS, the optimization of procedures, automation of the total vessel traffic process, et

    Model of large scale man-machine systems with an application to vessel traffic control

    Get PDF
    Mathematical models are discussed to deal with complex large-scale man-machine systems such as vessel (air, road) traffic and process control systems. Only interrelationships between subsystems are assumed. Each subsystem is controlled by a corresponding human operator (HO). Because of the interaction between subsystems, the HO has to estimate the state of all relevant subsystems and the relationships between them, based on which he can decide and react. This nonlinear filter problem is solved by means of both a linearized Kalman filter and an extended Kalman filter (in case state references are unknown and have to be estimated). The general model structure is applied to the concrete problem of vessel traffic control. In addition to the control of each ship, this involves collision avoidance between ship

    Assessing the accuracy of Hartree-Fock-Bogoliubov calculations by use of mass relations

    Full text link
    The accuracy of three different sets of Hartree-Fock-Bogoliubov calculations of nuclear binding energies is systematically evaluated. To emphasize minor fluctuations, a second order, four-point mass relation, which almost completely eliminates smooth aspects of the binding energy, is introduced. Applying this mass relation yields more scattered results for the calculated binding energies. By examining the Gaussian distributions of the non-smooth aspects which remain, structural differences can be detected between measured and calculated binding energies. Substructures in regions of rapidly changing deformation, specifically around (N,Z)=(60,40)(N,Z)=(60,40) and (90,60)(90,60), are clearly seen for the measured values, but are missing from the calculations. A similar three-point mass relation is used to emphasize odd-even effects. A clear decrease with neutron excess is seen continuing outside the experimentally known region for the calculations.Comment: 13 pages, 9 figures, published versio

    Structure and decay at rapid proton capture waiting points

    Full text link
    We investigate the region of the nuclear chart around A70A \simeq 70 from a three-body perspective, where we compute reaction rates for the radiative capture of two protons. One key quantity is here the photon dissociation cross section for the inverse process where two protons are liberated from the borromean nucleus by photon bombardment. We find a number of peaks at low photon energy in this cross section where each peak is located at the energy corresponding to population of a three-body resonance. Thus, for these energies the decay or capture processes proceed through these resonances. However, the next step in the dissociation process still has the option of following several paths, that is either sequential decay by emission of one proton at a time with an intermediate two-body resonance as stepping stone, or direct decay into the continuum of both protons simultaneously. The astrophysical reaction rate is obtained by folding of the cross section as function of energy with the occupation probability for a Maxwell-Boltzmann temperature distribution. The reaction rate is then a function of temperature, and of course depending on the underlying three-body bound state and resonance structures. We show that a very simple formula at low temperature reproduces the elaborate numerically computed reaction rate.Comment: 4 pages, 3 figures, conference proceedings, publishe

    Boxfishes (Teleostei: Ostraciidae) as a model system for fishes swimming with many fins: kinematics

    Get PDF
    Swimming movements in boxfishes were much more complex and varied than classical descriptions indicated. At low to moderate rectilinear swimming speeds (<5 TL s^(-1), where TL is total body length), they were entirely median- and paired-fin swimmers, apparently using their caudal fins for steering. The pectoral and median paired fins generate both the thrust needed for forward motion and the continuously varied, interacting forces required for the maintenance of rectilinearity. It was only at higher swimming speeds (above 5 TL s^(-1)), when burst-and-coast swimming was used, that they became primarily body and caudal-fin swimmers. Despite their unwieldy appearance and often asynchronous fin beats, boxfish swam in a stable manner. Swimming boxfish used three gaits. Fin-beat asymmetry and a relatively nonlinear swimming trajectory characterized the first gait (0–1 TL s^(-1)). The beginning of the second gait (1–3 TL s^(-1)) was characterized by varying fin-beat frequencies and amplitudes as well as synchrony in pectoral fin motions. The remainder of the second gait (3–5 TL s^(-1)) was characterized by constant fin-beat amplitudes, varying finbeat frequencies and increasing pectoral fin-beat asynchrony. The third gait (>5 TL s^(-1)) was characterized by the use of a caudal burst-and-coast variant. Adduction was always faster than abduction in the pectoral fins. There were no measurable refractory periods between successive phases of the fin movement cycles. Dorsal and anal fin movements were synchronized at speeds greater than 2.5 TL s^(-1), but were often out of phase with pectoral fin movements

    Emergence of clusters: Halos, Efimov states, and experimental signals

    Get PDF
    We investigate emergence of halos and Efimov states in nuclei by use of a newly designed model which combines self-consistent mean-field and three-body descriptions. Recent interest in neutron heavy calcium isotopes makes 72^{72}Ca (70^{70}Ca+n+n) an ideal realistic candidate on the neutron dripline, and we use it as a representative example that illustrates our broadly applicable conclusions. By smooth variation of the interactions we simulate the crossover from well-bound systems to structures beyond the threshold of binding, and find that halo-configurations emerge from the mean-field structure for three-body binding energy less than 100\sim 100keV. Strong evidence is provided that Efimov states cannot exist in nuclei. The structure that bears the most resemblance to an Efimov state is a giant halo extending beyond the neutron-core scattering length. We show that the observable large-distance decay properties of the wave function can differ substantially from the bulk part at short distances, and that this evolution can be traced with our combination of few- and many-body formalisms. This connection is vital for interpretation of measurements such as those where an initial state is populated in a reaction or by a beta-decay.Comment: 5 pages, 5 figures, under revie
    corecore