15 research outputs found

    Greatly increased occurrence of breast cancers in areas of mammographically dense tissue

    Get PDF
    INTRODUCTION: Mammographic density is a strong, independent risk factor for breast cancer. A critical unanswered question is whether cancers tend to arise in mammographically dense tissue (i.e. are densities directly related to risk or are they simply a marker of risk). This question cannot be addressed by studying invasive tumors because they manifest as densities and cannot be confidently differentiated from the densities representing fibrous and glandular tissue. We addressed this question by studying ductal carcinoma in situ (DCIS), as revealed by microcalcifications. METHOD: We studied the cranio-caudal and the mediolateral-oblique mammograms of 28 breasts with a solitary DCIS lesion. Two experienced radiologists independently judged whether the DCIS occurred in a mammographically dense area, and determined the density of different areas of the mammograms. RESULTS: It was not possible to determine whether the DCIS was or was not in a dense area for six of the tumors. Of the remaining 22 lesions, 21 occurred in dense tissue (test for difference from expected taken as the percentage of density of the 'mammographic quadrant' containing DCIS; P < 0.0001). A preponderance of DCIS (17 out of 28) occurred in the mammographic quadrant with the highest percentage density. CONCLUSION: DCIS occurs overwhelmingly in the mammographically dense areas of the breast, and pre-DCIS mammograms showed that this relationship was not brought about by the presence of the DCIS. This strongly suggests that some aspect of stromal tissue comprising the mammographically dense tissue directly influences the carcinogenic process in the local breast glandular tissue

    Breast epithelial cell proliferation is markedly increased with short-term high levels of endogenous estrogen secondary to controlled ovarian hyperstimulation

    Get PDF
    Oocyte donors have high serum estradiol (E2) levels similar to the serum levels seen in the first trimester of pregnancy. We report in this article our studies comparing cell proliferation, Ki67 (MIB1), and estrogen and progesterone receptor levels (ERα, PRA, and PRB) in the breast terminal duct lobular units of oocyte donors, women in early pregnancy, and in normally cycling women. Breast tissue and blood samples were obtained from 10 oocyte donors, and 30 pregnant women at 5–18 weeks of gestation. Breast tissue samples were also obtained from 26 normally cycling women. In the oocyte donors: peak E2 (mean ~15,300 pmol/l) was reached on the day before oocyte (and tissue) donation; peak progesterone (P4; mean 36.3 nmol/l) was reached on the day of donation; Ki67 was positively associated with level of E2, and the mean Ki67 was 7.0% significantly greater than the mean 1.8% of cycling women. In the pregnant women: mean E2 rose from ~2,000 pmol/l at 5 weeks of gestation to ~27,000 pmol/l at 18 weeks; mean P4 did not change from ~40 nmol/l until around gestational week 11 when it increased to ~80 nmol/l; mean Ki67 was 15.4% and did not vary with gestational age or E2. Oocyte donors have greatly increased levels of E2 and of breast-cell proliferation, both comparable in the majority of donors to the levels seen in the first trimester of pregnancy. Whether their short durations of greatly increased E2 levels are associated with any long-term beneficial effects on the breast, as occurring in rodent models, is not known

    Breast Cancer: Comparative Effectiveness of Positron Emission Mammography and MR Imaging in Presurgical Planning for the Ipsilateral Breast1

    Get PDF
    Overall, 61 (16%) of 388 participants had an appropriate change in surgical management based on MR findings—more than the 41 (11%) participants with an appropriate change based on positron emission mammography (PEM) findings (P = .003) and fewer than the 71 (18%) participants with an appropriate change based on combined PEM and MR findings (P = .004 for comparison with MR imaging alone); 25 (6.4%) women had excessive excisions on the basis of MR findings compared with 19 (4.9%) women who had them on the basis of PEM findings (P = .26) and 32 (8.2%) women who had them after undergoing combined PEM and MR imaging (P = .023 for comparison with MR imaging alone)

    Reasons Women at Elevated Risk of Breast Cancer Refuse Breast MR Imaging Screening: ACRIN 66661

    Get PDF
    Our study results suggest that there may be a large group of women at elevated risk of breast cancer for whom MR imaging would not be acceptable; for these women, supplemental screening with US combined with mammography could be considered

    Double-Blind Randomized 12-Month Soy Intervention Had No Effects on Breast MRI Fibroglandular Tissue Density or Mammographic Density.

    No full text
    Soy supplementation by patients with breast cancer remains controversial. No controlled intervention studies have investigated the effects of soy supplementation on mammographic density in patients with breast cancer. We conducted a double-blind, randomized, placebo-controlled intervention study in previously treated patients with breast cancer (n = 66) and high-risk women (n = 29). We obtained digital mammograms and breast MRI scans at baseline and after 12 months of daily soy (50 mg isoflavones per day; n = 46) or placebo (n = 49) tablet supplementation. The total breast area (MA) and the area of mammographic density (MD) on the mammogram were measured using a validated computer-assisted method, and mammographic density percent (MD% = 100 × MD/MA) was determined. A well-tested computer algorithm was used to quantitatively measure the total breast volume (TBV) and fibroglandular tissue volume (FGV) on the breast MRI, and the FGV percent (FGV% = 100 × FGV/TBV) was calculated. On the basis of plasma soy isoflavone levels, compliance was excellent. Small decreases in MD% measured by the ratios of month 12 to baseline levels were seen in the soy (0.95) and the placebo (0.87) groups; these changes did not differ between the treatments (P = 0.38). Small decreases in FGV% were also found in both the soy (0.90) and the placebo (0.92) groups; these changes also did not differ between the treatments (P = 0.48). Results were comparable in patients with breast cancer and high-risk women. We found no evidence that soy supplementation would decrease mammographic density and that MRI might be more sensitive to changes in density than mammography
    corecore