49 research outputs found

    Unchanged muscle fiber conduction velocity relates to mild acidosis during exhaustive bicycling

    Get PDF
    Muscle fiber conduction velocity (MFCV) has often been shown to decrease during standardized fatiguing isometric contractions. However, several studies have indicated that the MFCV may remain constant during fatiguing dynamic exercise. It was investigated if these observations can be related to the absence of a large decrease in pH and if MFCV can be considered as a good indicator of acidosis, also during dynamic bicycle exercise. High-density surface electromyography (HDsEMG) was combined with read-outs of muscle energetics recorded by in vivo 31P magnetic resonance spectroscopy (MRS). Measurements were performed during serial exhausting bouts of bicycle exercise at three different workloads. The HDsEMG recordings revealed a small and incoherent variation of MFCV during all high-intensity exercise bouts. 31P MRS spectra revealed a moderate decrease in pH at the end of exercise (~0.3 units down to 6.8) and a rapid ancillary drop to pH 6.5 during recovery 30 s post-exercise. This additional degree of acidification caused a significant decrease in MFCV during cycling immediately after the rest period. From the data a significant correlation between MFCV and [H+] ([H+] = 10−pH) was calculated (p < 0.001, Pearson’s R = −0.87). Our results confirmed the previous observations of MFCV remaining constant during fatiguing dynamic exercise. A constant MFCV is in line with a low degree of acidification, considering the presence of a correlation between pH and MFCV after further increasing acidification

    Fatigue In Teenagers on the interNET - The FITNET Trial. A randomized clinical trial of web-based cognitive behavioural therapy for adolescents with chronic fatigue syndrome: study protocol. [ISRCTN59878666]

    Get PDF
    Contains fulltext : 97913.pdf (publisher's version ) (Open Access)BACKGROUND: Chronic Fatigue Syndrome (CFS) is increasingly recognized as a cause of disability and inactivity in adolescents in the Netherlands. CFS is characterized by unexplained fatigue lasting more than 6 months. Cognitive Behavioural Therapy (CBT) has proven to be effective. However, CBT availability for adolescents with CFS is limited and requires special therapeutic skills not always readily available. An alternative to the face-to-face CBT is FITNET, a web-based therapeutic program designed specifically for adolescents diagnosed with CFS, and their parents. This new CBT approach appeals to the modern youth, who grow up with internet as their main source of information. A web-based program offers the opportunity to lower thresholds for the acceptance and realization of healthcare. This treatment can be activated at any chosen time. The communication between patient and therapist can elapse asynchronously. If effective, this web-based program would greatly increase the therapeutic accessibility. METHODS/DESIGN: A randomized clinical trial is currently conducted. One-hundred-forty adolescents aged 12-18 years diagnosed with CFS will be recruited and randomized to one of two groups: FITNET or usual care. After 6 months, the usual care group will have access to the FITNET program. Outcomes will be assessed at baseline, post intervention, and at 6 months follow-up. Primary outcome measures are school presence, fatigue severity, and physical functioning. DISCUSSION: The FITNET study is the first randomized clinical trial which evaluates the effect of web-based CBT versus usual care in adolescents with CFS. The intervention is based on a theoretical existing model of CBT for patients with CFS. The results of this study will provide information about the possibility and efficacy of web-based CBT for adolescents with CFS and will reveal predictors of efficacy. TRIAL REGISTRATION: ISRCTN: ISRCTN59878666 and ClinicalTrials.gov: NCT00893438

    The effects of traditional, superset, and tri-set resistance training structures on perceived intensity and physiological responses.

    Get PDF
    PURPOSE: Investigate the acute and short-term (i.e., 24 h) effects of traditional (TRAD), superset (SS), and tri-set (TRI) resistance training protocols on perceptions of intensity and physiological responses. METHODS: Fourteen male participants completed a familiarisation session and three resistance training protocols (i.e., TRAD, SS, and TRI) in a randomised-crossover design. Rating of perceived exertion, lactate concentration ([Lac]), creatine kinase concentration ([CK]), countermovement jump (CMJ), testosterone, and cortisol concentrations was measured pre, immediately, and 24-h post the resistance training sessions with magnitude-based inferences assessing changes/differences within/between protocols. RESULTS: TRI reported possible to almost certainly greater efficiency and rate of perceived exertion, although session perceived load was very likely lower. SS and TRI had very likely to almost certainly greater lactate responses during the protocols, with changes in [CK] being very likely and likely increased at 24 h, respectively. At 24-h post-training, CMJ variables in the TRAD protocol had returned to baseline; however, SS and TRI were still possibly to likely reduced. Possible increases in testosterone immediately post SS and TRI protocols were reported, with SS showing possible increases at 24-h post-training. TRAD and SS showed almost certain and likely decreases in cortisol immediately post, respectively, with TRAD reporting likely decreases at 24-h post-training. CONCLUSIONS: SS and TRI can enhance training efficiency and reduce training time. However, acute and short-term physiological responses differ between protocols. Athletes can utilise SS and TRI resistance training, but may require additional recovery post-training to minimise effects of fatigue

    A review of combined advanced oxidation technologies for the removal of organic pollutants from water

    Get PDF
    Water pollution through natural and anthropogenic activities has become a global problem causing short-and long-term impact on human and ecosystems. Substantial quantity of individual or mixtures of organic pollutants enter the surface water via point and nonpoint sources and thus affect the quality of freshwater. These pollutants are known to be toxic and difficult to remove by mere biological treatment. To date, most researches on the removal of organic pollutants from wastewater were based on the exploitation of individual treatment process. This single-treatment technology has inherent challenges and shortcomings with respect to efficiency and economics. Thus, application of two advanced treatment technologies characterized with high efficiency with respect to removal of primary and disinfection by-products in wastewater is desirable. This review article focuses on the application of integrated technologies such as electrohydraulic discharge with heterogeneous photocatalysts or sonophotocatalysis to remove target pollutants. The information gathered from more than 100 published articles, mostly laboratories studies, shows that process integration effectively remove and degrade recalcitrant toxic contaminants in wastewater better than single-technology processing. This review recommends an improvement on this technology (integrated electrohydraulic discharge with heterogeneous photocatalysts) viz-a-vis cost reduction in order to make it accessible and available in the rural and semi-urban settlement. Further recommendation includes development of an economic model to establish the cost implications of the combined technology. Proper monitoring, enforcement of the existing environmental regulations, and upgrading of current wastewater treatment plants with additional treatment steps such as photocatalysis and ozonation will greatly assist in the removal of environmental toxicants

    The Epidemiology of Trace Element Deficiencies

    No full text

    Characterization of renal chloride channel (CLCN5) mutations in Dent's disease.

    No full text
    Dent's disease is an X-linked renal tubular disorder characterized by low molecular weight proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis, and renal failure. The disease is caused by mutations in a renal chloride channel gene, CLCN5, which encodes a 746 amino acid protein (CLC-5), with 12 to 13 transmembrane domains. In this study, an additional six unrelated patients with Dent's disease were identified and investigated for CLCN5 mutations by DNA sequence analysis of the 11 coding exons of CLCN5. This revealed six mutations: four frameshift deletions involving codons 392, 394, 658, and 728, one nonsense mutation (Tyr617Stop), and an A to T transversion at codon 601 that would result in either a missense mutation (Asp601Val) or creation of a novel donor splice site. These mutations were confirmed by restriction endonuclease or sequence-specific oligonucleotide hybridization analysis and were not common polymorphisms. The frameshift deletions and nonsense mutation predict truncated and inactivated CLC-5. The effects of the putative missense Asp601Val mutant CLC-5 were assessed by heterologous expression in Xenopus oocytes, and this revealed a chloride conductance that was similar to that observed for wild-type CLC-5. However, an analysis of the mutant CLCN5 transcripts revealed utilization of the novel donor splice site, resulting in a truncated CLC-5. Thus, all of the six mutations are likely to result in truncated CLC-5 and a loss of function, and these findings expand the spectrum of CLCN5 mutations associated with Dent's disease
    corecore