439 research outputs found

    Progression of carotid plaque volume predicts cardiovascular events

    Get PDF
    BACKGROUND AND PURPOSE: Carotid ultrasound evaluation of intima-media thickness (IMT) and plaque burden has been used for risk stratification and for evaluation of antiatherosclerotic therapies. Increasing evidence indicates that measuring plaque burden is superior to measuring IMT for both purposes. We compared progression/regression of IMT, total plaque area (TPA), and total plaque volume (TPV) as predictors of cardiovascular outcomes. METHODS: IMT, TPA, and TPV were measured at baseline in 349 patients attending vascular prevention clinics; they had TPA of 40 to 600 mm(2) at baseline to qualify for enrollment. Participants were followed up for ≤5 years (median, 3.17 years) to ascertain vascular death, myocardial infarction, stroke, and transient ischemic attacks. Follow-up measurements 1 year later were available in 323 cases for IMT and TPA, and in 306 for TPV. RESULTS: Progression of TPV predicted stroke, death or TIA (Kaplan-Meier logrank P=0.001), stroke/death/MI (P=0.008) and Stroke/Death/TIA/Myocardial infarction (any Cardiovascular event) (P=0.001). Progression of TPA weakly predicted Stroke/Death/TIA (P=0.097) but not stroke/death/MI (P=0.59) or any CV event (P=0.143); likewise change in IMT did not predict Stroke/Death/MI (P=0.13) or any CV event (P=0.455 ). In Cox regression, TPV progression remained a significant predictor of events after adjustment for coronary risk factors (P=0.001) but change in TPA did not. IMT change predicted events in an inverse manner; regression of IMT predicted events (P=0.004). CONCLUSIONS: For assessment of response to antiatherosclerotic therapy, measurement of TPV is superior to both IMT and TPA

    Immune function in mania

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27250/1/0000258.pd

    Fracture Quality From Integrating Time-Lapse VSP and Microseismic Data

    Get PDF
    Tight gas reservoirs are problematic to produce, often requiring multiple stages of hydraulic fracturing in order to create connected pathways through which hydrocarbons may flow. In this paper, we propose a new methodology to characterize the quality of hydraulic fractures. Using synthetic VSP and microseismic data, we test the concept that the rock volume containing open, gas filled fractures will scatter seismic energy more profusely than a volume containing closed, non-productive fractures. By measuring the amount of scattered energy in a time lapse 3D VSP study taken before and after the hydraulic fracturing episode, we hope to be able to compare the productive flow quality of different regions of the hydraulically fractured rock. The microseismic recordings allow us both to locate areas which have been hydraulically fractured and create imaging operators to extract the scattered signals from the time lapse VSP data.United States. Dept. of Energy (grant DE-FC26-06NT42956)Massachusetts Institute of Technology. Earth Resources Laborator

    The relative advantage of marketing over technological capabilities in influencing new product performance:the moderating role of country institutions

    Get PDF
    Marketing and technological capabilities are major drivers of new product performance. Prior research has suggested that marketing capabilities outperform technological capabilities. This study shows that the relative advantage of marketing over technological capabilities for new product performance depends on the institutional context in a country. Meta-analytic data of 341 effect sizes of the relationship between capabilities and new product performance taken from 50 articles with 57 independent samples and collected in 17 different countries reveal new contingencies to the capabilities framework. Although in general, marketing capabilities have a stronger influence than technological capabilities on new product performance, this effect is moderated by institutional context factors. The relative advantage decreases and even reverses with increasing growth rates; it further decreases with increasingly stronger rules of law in a country; and it increases in societies that put emphasis on self-expression values over survival values. These findings contribute to research on the utility of different capabilities, inform the institution-based view of firms in international marketing, and provide implications for international marketing managers

    Radio frequency reflectometry and charge sensing of a precision placed donor in silicon

    Get PDF
    We compare charge transitions on a deterministic single P donor in silicon using radio frequency reflectometry measurements with a tunnel coupled reservoir and DC charge sensing using a capacitively coupled single electron transistor (SET). By measuring the conductance through the SET and comparing this with the phase shift of the reflected RF excitation from the reservoir, we can discriminate between charge transfer within the SET channel and tunneling between the donor and reservoir. The RF measurement allows observation of donor electron transitions at every charge degeneracy point in contrast to the SET conductance signal where charge transitions are only observed at triple points. The tunnel coupled reservoir has the advantage of a large effective lever arm (~35%) allowing us to independently extract a neutral donor charging energy ~62 +/- 17meV. These results demonstrate that we can replace three terminal transistors by a single terminal dispersive reservoir, promising for high bandwidth scalable donor control and readout.Comment: 5 pages, 3 figures. Copyright (2015) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physic

    Consistent supersymmetric Kaluza--Klein truncations with massive modes

    Full text link
    We construct consistent Kaluza--Klein reductions of D=11 supergravity to four dimensions using an arbitrary seven-dimensional Sasaki--Einstein manifold. At the level of bosonic fields, we extend the known reduction, which leads to minimal N=2 gauged supergravity, to also include a multiplet of massive fields, containing the breathing mode of the Sasaki--Einstein space, and still consistent with N=2 supersymmetry. In the context of flux compactifications, the Sasaki--Einstein reductions are generalizations of type IIA SU(3)-structure reductions which include both metric and form-field flux and lead to a massive universal tensor multiplet. We carry out a similar analysis for an arbitrary weak G_2 manifold leading to an N=1 supergravity with massive fields. The straightforward extension of our results to the case of the seven-sphere would imply that there is a four-dimensional Lagrangian with N=8 supersymmetry containing both massless and massive spin two fields. We use our results to construct solutions of M-theory with non-relativistic conformal symmetry.Comment: 33 pages. v2: Added section on skew-whiffed solutions and some brief comments on holographic superconductors. v3: typos corrected, version to be published in JHE

    Culture and collective action: Japan, Germany and the United States after 11 September 2001

    Full text link
    In order to put a lens on the issue of international security cooperation after 11 September 2001, this article examines the question of how collective action in International Relations becomes possible. The author maintains that a fair amount of inter-state collective action can be understood, even explained, by analysing the culture of the international system. Using discourse analysis as a tool, the analysis addresses the underlying ideas, norms and identities that constitute the relationship between the United States and Japan, on the one hand, and Germany and the United States, on the other, as it has evolved since September 2001. The method exposes how some ideas are privileged over others, how norms are maintained, reformulated and abandoned, how identity is constructed and how power is legitimized in the 'war on terror'

    Using Dark Energy Explorers and Machine Learning to Enhance the Hobby-Eberly Telescope Dark Energy Experiment

    Get PDF
    We present analysis using a citizen science campaign to improve the cosmological measures from the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). The goal of HETDEX is to measure the Hubble expansion rate, H(z)H(z), and angular diameter distance, DA(z)D_A(z), at z=z = 2.4, each to percent-level accuracy. This accuracy is determined primarily from the total number of detected Lyman-α\alpha emitters (LAEs), the false positive rate due to noise, and the contamination due to [O II] emitting galaxies. This paper presents the citizen science project, Dark Energy Explorers, with the goal of increasing the number of LAEs, decreasing the number of false positives due to noise and the [O II] galaxies. Initial analysis shows that citizen science is an efficient and effective tool for classification most accurately done by the human eye, especially in combination with unsupervised machine learning. Three aspects from the citizen science campaign that have the most impact are 1) identifying individual problems with detections, 2) providing a clean sample with 100% visual identification above a signal-to-noise cut, and 3) providing labels for machine learning efforts. Since the end of 2022, Dark Energy Explorers has collected over three and a half million classifications by 11,000 volunteers in over 85 different countries around the world. By incorporating the results of the Dark Energy Explorers we expect to improve the accuracy on the DA(z)D_A(z) and H(z)H(z) parameters at z=z = 2.4 by 10 - 30%. While the primary goal is to improve on HETDEX, Dark Energy Explorers has already proven to be a uniquely powerful tool for science advancement and increasing accessibility to science worldwide.Comment: 14 pages, 6 figures, accepted for publication in The Astrophysical Journa
    • …
    corecore