107 research outputs found

    DFTB+ and lanthanides

    Get PDF
    DFTB+ is a recent general purpose implementation of density-functional based tight binding. One of the early motivators to develop this code was to investigate lanthanide impurities in nitride semiconductors, leading to a series of successful studies into structure and electrical properties of these systems. Here we describe our general framework to treat the physical effects needed for these problematic impurities within a tight-binding formalism, additionally discussing forces and stresses in DFTB. We also present an approach to evaluate the general case of Slater-Koster transforms and all of their derivatives in Cartesian coordinates. These developments are illustrated by simulating isolated Gd impurities in GaN

    DFTB+ and lanthanides

    Get PDF
    DFTB+ is a recent general purpose implementation of density-functional based tight binding. One of the early motivators to develop this code was to investigate lanthanide impurities in nitride semiconductors, leading to a series of successful studies into structure and electrical properties of these systems. Here we describe our general framework to treat the physical effects needed for these problematic impurities within a tight-binding formalism, additionally discussing forces and stresses in DFTB. We also present an approach to evaluate the general case of Slater-Koster transforms and all of their derivatives in Cartesian coordinates. These developments are illustrated by simulating isolated Gd impurities in GaN

    The geometrical nature of optical resonances in nanoparticles

    Full text link
    We give a geometrical theory of resonances in Maxwell's equations that generalizes Mie formulae for spheres to any dielectric or metallic particle without sharp edges. We show that the electromagnetic response of a particle is given by a set of modes of internal and scattered fields and reveal a strong analogy between resonances in nanoparticles and excess noise in unstable macroscopic cavities. We give examples of two types of optical resonances: those in which a single pair of internal and scattered modes become strongly aligned in the sense defined in this paper, and those resulting from constructive interference of many pairs of weakly aligned modes, an effect relevant for sensing. We demonstrate that modes can be either bright or dark depending on the incident field and give examples of how the excitation can be optimized. Finally, we apply this theory to gold particles with shapes often used in experiments.Comment: 4 pages, 3 figure

    DFTB+ and lanthanides

    Get PDF
    DFTB+ is a recent general purpose implementation of density-functional based tight binding. One of the early motivators to develop this code was to investigate lanthanide impurities in nitride semiconductors, leading to a series of successful studies into structure and electrical properties of these systems. Here we describe our general framework to treat the physical effects needed for these problematic impurities within a tight-binding formalism, additionally discussing forces and stresses in DFTB. We also present an approach to evaluate the general case of Slater-Koster transforms and all of their derivatives in Cartesian coordinates. These developments are illustrated by simulating isolated Gd impurities in GaN

    Calculation of internal and scattered fields of axisymmetric nanoparticles at any point in space

    Get PDF
    We present a method of simultaneously calculating both the internal and external fields of arbitrarily shaped dielectric and metallic axisymmetric nanoparticles. By using a set of distributed spherical vector wavefunctions that are exact solutions to Maxwell's equations and which form a complete, linearly independent set on the particle surface, we approximate the surface Green functions of particles. In this way we can enforce the boundary conditions at the interface and represent the electromagnetic fields at the surface to an arbitrary precision. With the boundary conditions at the particle surface satisfied, the electromagnetic fields are uniquely determined at any point in space, whether internal or external to the particle. Furthermore, the residual field error at the particle surface can be shown to give an upper bound error for the field solutions at any point in space. We show the accuracy of this method with two important areas studied widely in the literature, photonic nanojets and the internal field structure of nanoparticles

    Ewald summation on a helix : a route to self-consistent charge density-functional based tight-binding objective molecular dynamics

    Get PDF
    We explore the generalization to the helical case of the classical Ewald method, the harbinger of all modern self-consistent treatments of waves in crystals, including ab initio electronic structure methods. Ewald-like formulas that do not rely on a unit cell with translational symmetry prove to be numerically tractable and able to provide the crucial component needed for coupling objective molecular dynamics with the self-consistent charge density-functional based tight-binding treatment of the inter-atomic interactions. The robustness of the method in addressing complex hetero-nuclear nano- and bio-systems is demonstrated with illustrative simulations on a helical boron nitride nanotube, a screw dislocated zinc oxide nanowire, and an ideal DNA molecule

    Coherent control of plasmons in nanoparticles with nonlocal response

    Get PDF
    We discuss a scheme for the coherent control of light and plasmons in nanoparticles that have nonlocal dielectric permittivity and contain nonlinear impurities or color centers. We consider particles which have a response to light that is strongly influenced by plasmons over a broad range of frequencies. Our coherent control method enables the reduction of absorption and/or suppression of scattering

    Site multiplicity of rare earth ions in III-nitrides

    Get PDF
    This presentation reviews recent lattice location studies of RE ions in GaN by electron emission channelling (EC) and X-ray absorption fine structure (XAFS) techniques. These studies agree that RE ions at low concentrations (whether they are incorporated during growth or introduced later by ion implantation) predominantly occupy Ga substitutional sites, as expected from considerations of charge equivalence. We combine this result with some examples of the welldocumented richness of optical spectra of GaN:RE3+ to suggest that the luminescence of these materials may be ascribed to a family of rather similar sites, all of which feature the REGa defect

    Efficient tight-binding approach for the study of strongly correlated systems

    Get PDF
    In this work, we present results from self-consistent charge density functional based tight-binding (DFTB) calculational scheme, including local-density approximation +U (LDA+U) and simplified self-interaction-corrected-like potentials for the simulation of systems with localized strongly correlated electrons. This approach attempts to combine the efficiency of tight binding with the accuracy of more sophisticated ab initio methods and allows treatment of highly correlated electrons for very large systems. This is particularly interesting for the case of rare earths in GaN, where dilute amount of rare earth ions is used. In this work, we show the results of test calculations on bulk ErN and on the substitutional Er-Ga in wurtzite GaN, which we choose as representatives of bulk and point defects in solids with strongly correlated electrons. We find that ErN is a half metal in the ferromagnetic phase and that the substitutional Er-Ga in wurtzite GaN has C-3v symmetry. These examples show that the DFTB approach reproduces well the results of more demanding calculation schemes with a very low computational cost, making it suitable for the study of extended systems beyond the capabilities of density functional theory

    Electrical activity of carbon-hydrogen centers in Si

    Get PDF
    The electrical activity of Cs-H defects in Si has been investigated in a combined modeling and experimental study. High-resolution Laplace capacitance spectroscopy with the uniaxial stress technique has been used to measure the stress-energy tensor and the results are compared with theoretical modeling. At low temperatures, implanted H is trapped as a negative-U center with a donor level in the upper half of the gap. However, at higher temperatures, H migrates closer to the carbon impurity and the donor level falls, crossing the gap. At the same time, an acceptor level is introduced into the upper gap making the defect a positive-U center
    • …
    corecore