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Abstract. DFTB+ is a recent general purpose implementation of density-functional based
tight binding. One of the early motivators to develop this code was to investigate lanthanide
impurities in nitride semiconductors, leading to a series of successful studies into structure
and electrical properties of these systems. Here we describe our general framework to treat
the physical effects needed for these problematic impurities within a tight-binding formalism,
additionally discussing forces and stresses in DFTB. We also present an approach to evaluate
the general case of Slater-Koster transforms and all of their derivatives in Cartesian coordinates.
These developments are illustrated by simulating isolated Gd impurities in GaN.

1. Introduction
The Kohn-Sham density functional theory (DFT) can be approximated to give a family of
semi-empirical methods with much lower computational costs than full DFT. The Density
Functional based Tight binding method (DFTB) [1] is a non-orthogonal method derived from an
approximate second-order expansion of DFT with respect to fluctuations in the density [2]. This
gives a transparent and parameter-free technique where all terms can be readily pre-calculated
using DFT. This method has been applied with some success to a range of solid state, molecular
and biological systems.

The study of systems like rare-earth or transition metal containing compounds and
solids requires somewhat different techniques beyond charge self-consistent DFTB [3]. Spin
polarisation [4] is essential, and for the strongly correlated d and f electrons, methods like
LDA+U [5] or pseudo-SIC [6] also become necessary. Additionally lanthanide atomic numbers
are between 57 and 70, hence relativistic effects start becoming important. The latest version
of the DFTB+ code [7] includes extensions to address all of this additional complexity in the
treatment of lanthanides, the DFTB method having been substantially extended by adapting
LDA+U and pseudo-SIC into a common framework [8] and adopting Russel-Saunders L · S
coupling [4]. Here we describe the approach used to include these disparate effects within an
common computational framework.

1.1. non-SCC DFTB and Slater-Koster transforms
In the present case, Slater-Koster type tight binding [9] requires geometrical transformations for
two centre terms between orbitals with angular momentum of up to f . Closed form expressions
for these transforms to arbitrary angular momentum [10] and their analytical derivatives [11]
are available. However, in the spherical-polar coordinate systems used, there are spurious
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singularities at the poles, leading to these points being presented as separate special cases
without a continuous functional form over the whole coordinate range. The transformations
are written in terms of directional cosines between atomic pairs (N , M and L) and depend
on products of the general form exp(iφ|m|)dlm,m′(θ) where l, m and m′ are the usual angular
labels, θ and φ are the polar and azimuthal angles (see Ref. [10] for details). The apparently
problematic part of the Wigner-d matrices in these terms is

dlm,m′ ∝
2×l+1∑

t=0,non−neg
(1−N)t+m/2+m′/2(1 +N)l−t−m/2+m′/2

× (−1)t

(l +m′ − t)!(l −m− t)!t!(t+m−m′)!

where the summation over t is such that the factorial terms in the denominator are all > 0. This
summation constraint leads to the (1±N) terms being well-behaved even at the poles (|N | = 1).
This holds from t > 0 and t > m′ −m, ∴ t+m/2 +m′/2 > 0 and similarly, l +m′ − t > 0 and
l −m− t > 0, ∴ l −m/2 +m′/2− t > 0.

However the problem of the azimuthal angle, which becomes undefined at either pole,
remains. This can be partially alleviated by defining this angle using φ = atan2(M,−L), but
care is required since atan2(0, 0) is again undefined (but in specific machine implementations,
Intel’s FPATAN [12] for example, it is defined as the required case of ±0 for sign choices of

atan2(±0,+0)). The overall exponential term is then of the form
(

(M + iL)/
√
M2 + L2 + δ

)|m|
where delta is infinitesimally positive, and again the M = L = 0 case requires a convention that
the function gives +1.

Since the system as a whole is invariant under the rotation group O3, a simpler option is to
perform the calculation in a global coordinate system rotated, for example, in the xz plane and
chosen such that no inter-atomic vectors align exactly along the z axis (in all cases |N | 6= 0).
This allows the original rotation expressions and any order of their derivatives to be used. In
the situation that a change in geometry brings an atomic pair into exact alignment with ±z,
the stable Wigner d-matrix form given above can then be used to rotate any orientationally
dependent terms in the Hamiltonian away from the problematic alignment by an additional
application of Eqns. 5-6 of Ref [10] with the azimuthal change, γ, chosen as 0. However, in
practice, DFTB+ currently uses explicitly coded cases of the geometrical transformations up to
f .

1.2. Potential shifts
The total energy for spin-polarised SCC DFTB is the following functional of the density matrix
ρ:

E =
∑
µν

H0
µνρνµ +

1
2

∑
ab

(δqa[ρ]γabδqb[ρ] + δma[ρ]Wabδmb[ρ])

where δq and δm are fluctuations in the charge and magnetisation respectively from the reference
system used to construct the non-self-consistent Hamiltonian, H0. The domains a and b are
Mulliken populations constructed from the density and overlap (S) matrices, qµ = 1

2

∑
ν Sµνρνµ,

where qµ is additionally summed over either whole atoms or atomic shells with a given value of
l to give qa. The couplings γ and W are derived from either an approximation to the Hartree
and exchange correlation or an on-site Stoner-like exchange contribution respectively between
the fluctuations. The reference system chosen is a superposition of neutral and spin-free atomic
densities (or potentials, see Ref. [2] for more details of conventional DFTB).
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The Hamiltonian for the system, derived using the usual approach of minimising the total
energy subject to orthonormality of the resulting single particle states, is then of the general
form

Hσ
µν = H0

µν +
1
2
Sµν

(
Ωσ
µ + Ωσ

ν

)
where the spin dependent shifts are defined as Ωσ

µ =
∑

b γµbδqb[ρ] + σ
∑

bWµbδmb[ρ] for spins
σ = ±1. More general Hamiltonian contributions can also be cast into this form. An example
would be the constrained density method of Dederichs et al. [13] where the ground state density
matrix is found for a chosen charge distribution (so similar to the Levy–Lieb constrained search
method), by finding the ground state of the system in a (carefully chosen) external potential.
Wu and Van Voorhis [14] formulated this as a maximisation problem for integral constraints
using undetermined multipliers, by defining a new functional:

W [n(r),V] = E[n(r)] +
∑
i

Vi

(∫
wi(r)n(r)dr −Ni

)
to constrain Ni electrons to match the weighting envelope wi(r) over the density or magnetisation
within region that the i-th constraint is formulated. W is convex in n(r) and concave in V.
This then also gives a contribution to the DFT potential. To write these constraints for DFTB’s
Mulliken-charge based tight-binding populations is straight forward, and again gives a stationary
energy structure, as with DFT.

W [ρ,V] = EDFTB[ρ] +
∑
i

Vi

(∑
µ

wiµqµ[ρ]−Ni

)

where µ are basis function labels for the ith constraint, giving an equivalent shift contribution
of the form

Ωµ =
∑
i

Vi
∑
ν

wiνSµν

More general constraints of the form Ui (wiµqµ[ρ]−Ni)
κ can also be used, where in the case that

κ is odd the constraint is enforced by the choice of U as a Lagrange undetermined multiplier,
while for even values of κ this constraint is approximately enforced as U →∞.

1.3. Generalisations for orbital potentials and L · S
Instead of choosing Mulliken populations as our basic variable, the more general on-site
occupation matrix [15] can be used for assorted semi-local non-mean field potentials. These
matrices are defined as

nµν =
1
2

∑
τ

(Sµτρτν + ρµτSτν) ; µν ∈ a

where the matrix diagonal is the conventional Mulliken charge for atom a. Further generalising,
the Hamiltonian and occupation matrices can be projected onto the orthogonal Pauli matrices,
giving charge and non-collinear vectoral magnetisation in the system. The spin-block
Hamiltonian and density matrix can then be written as coefficients of Pauli matrices (σI,x,y,z):

Hµν = H0
µνσI +

1
2
Sµν

∑
j=x,y,z

(
Ωj
µ + Ωj

ν

)
σj

ρ =
∑

j=I,x,y,z

ρjνµσj
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for the corresponding generalised vectoral shifts. In the case of Russel-Saunders spin-orbit
coupling (or Complex Absorbing Potentials [16]) these Pauli-matrix coefficients become complex.

1.4. Forces and stresses
First derivatives of the band-structure part of the total energy can similarly be written in terms
of the shift components, using the Hellman-Feynman theorem and the Pulay correction for the
change of basis (using the energy weighted density matrix, ρE). The ith component of the
derivative of energy with respect to the position of atom a due to atom b is

∂E

∂xai

∣∣∣∣
b

=
∑
µ∈a

∑
ν∈b

∂H0
µν

∂xai
ρνµ +

∑
µ∈a

∑
ν∈b

∂Sµν
∂xai

(
(Ωµ + Ων) ρνµ − ρEνµ

)
where the ith Cartesian component of the force on atom a is then

Fai = −
∑
b

∂E

∂xai

∣∣∣∣
b

and the summation is calculated using the real-space matrices of Ref. [7]. The stress tensor is
also of similar form, with band-structure contributions of

σij = − 1
2Vcell

∑
ab

∂E

∂xai

∣∣∣∣
b

(xaj − xbj)

where Vcell is the unit cell volume. For the total stress and forces, the repulsive energy and also
long range interactions such as the electrostatic double counting and the dispersive interactions
introduce other terms into the total expressions, but these are of standard forms from the
literature.

The two main advantages of using the shift contributions formulation of the forces are that
firstly it simplifies the implementation of the majority of the force terms (since the code is
then common for many distinct contributions) using the already calculated shift contributions
from the Hamiltonian. Secondly it provides a semi-independent test for the correctness of any
new extension to DFTB, since while the Hamiltonian and the band-structure part of the forces
depend on the shifts, it is generally not possible to calculate the total energy from the total shift,
due to the differing functional forms of the various contributions. Therefore agreement between
the numerical and analytical derivatives of the energy signify that the independent shift and
total energy terms agree (and therefore the shift is the derivative of the energy with respect to
the eigenstates of the system).

2. Gd doped GaN
Focussing on a specific application of this formalism we now consider treatment a specific
substitutional rare-earth impurity in gallium nitride. REGa substitutionals are the simplest
stable lanthanide defects in GaN [17, 18, 19, 20, 21, 22, 23]. From experimental studies we know
that the ions prefer the Ga position [24], occur in the 3+ valence state [25] and possess C3v

symmetry [26] with relatively short distances to the surrounding N-ligands [27]. Gadolinium
doped GaN has been suggested to [28] have an extraordinarily large magnetic moment per
dopant atom.

The local structure of the substitutional is insensitive as to whether the Ga−3d orbitals are
treated as valence or core. The results here use a parameterization where the Ga-3d states are not
included in the valence, but these do not differ substantially from results obtained by including
them [17]. Supercells containing 192 atoms and a 63 Monkhorst-Pack k-point sampling [29] were
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used to calculate the results reported here, with the density of states for the bulk GaN supercell
used shown in Fig. 1, with the density inverted in sign above the Fermi energy (this convention
is also used in other plots where two spin channels are shown). The substitutional GdGa in the
lowest energy configuration is found to have C3v symmetry as expected with Gd–N distances of
2.246 and 2.242 Å for the axial and 3 fold surrounding bonds respectively.

Figure 1. Bulk DOS of GaN,
empty states are marked below 0.

Figure 2. Non-collinear z-aligned
density of states for Gd doped GaN
including spin-orbit coupling.

Figure 3. Collinear density of
states for Gd doped GaN.

Figure 4. DFTB+U collinear
density of states for Gd doped GaN.

The conventional spin polarised DFTB calculation leads to 7 unpaired spins primarily
localised on the Gd (6.77) with 96 % of that localized on the 4f shell. As shown in figure 3 the
presence of the Gd ions splits the spin degeneracy of the bottom of the conduction band and
would provide ferromagnetic coupling in the case of strong n-type doping [30], however this does
not explain the observed moment in the experimental conditions of highly resistive material [28].

The collinear (z) spin-polarized and non-collinear calculations are degenerate in energy. The
system is, as expected, degenerate with respect to rotation of the spin direction in the non-
collinear case. The addition of spin orbit coupling splits this degeneracy (values of the screened
atomic spin-orbit constants, ξ, are taken from Refs. [31, 32]), but by less than 1 meV. The 4f
shell is strongly spin polarized with 6.5 µB unpaired spin and a parallel orbital momentum of
0.28 µB, yielding a total moment of 6.8 µB, all similar to the expected 8S7/2 ground state. As
shown in Fig. 2 this does not lead to a substantial change in the density of states compared to
the collinear spin polarised case.

The 4f states of Gd are present around the valence band maximum for the spin-polarised
calculations, due to the incorrect treatment of the self-interaction of these states. Applying
LDA+U type potentials [18] shifts this type feature, moving the occupied states downwards in
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energy, and depending on the potential, the unoccupied states upwards.
Previous application of DFTB+U to other rare-earths and their complexes [33] have

demonstrated the applicability of this method to these systems. In the specific case of GdGa the
“FLL” LDA+U functional has been applied with a choice of 7.43 eV for (U − J) in accordance
with Ref. [8]. This leads to the an increase in the total energy by ∼0.8 eV, consisting primarily
of an increase of 1.4 and 0.3 eV in the band structure and additional LDA+U energy terms, but
a reduction of 0.9 eV in the spin polarization energy, due primarily to the increased localization
of the unpaired spin on the Gd 4f shell. This is evident between Figs. 3 and 4 where the empty
4f states are lifted clear from the valence band, while the filled states drop below the region of
the valence band.
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